• 沒有找到結果。

1. (15%) (a) (7%) Sketch the region of integration and evaluate the integral Z 2 1

N/A
N/A
Protected

Academic year: 2022

Share "1. (15%) (a) (7%) Sketch the region of integration and evaluate the integral Z 2 1"

Copied!
7
0
0

加載中.... (立即查看全文)

全文

(1)

1. (15%) (a) (7%) Sketch the region of integration and evaluate the integral Z 2

1

Z x

x

sin y

y dy dx + Z 4

2

Z 2

x

sin y

y dy dx.

(b) (8%) Express and compute the moment of inertia Iz of the solid hemisphere x2+ y2+ z2 = 4, z ≥ 0, in spherical coordinates. Take density function δ(x, y, z) = 1.

(a)

(2 points)

Z 2 1

Z x

x

sin y

y dydx + Z 4

2

Z 2

x

sin y

y dydx = Z 2

1

Z y2

y

sin y

y dxdy (4 points)

= sin 2 − cos 2 − sin 1. (1 points)

(b)

Z 0

Z π2

0

Z 2 0

(ρ sin φ)2ρ2sin φdρdφdθ (7 points)

= 128

15 π (1 points)

(2)

2. (10%) Z Z

R

(x + y)ex2−y2dA, where R is the rectangle enclosed by the lines x − y = 0, x − y = 2, x + y = 0, and x + y = 3.

Let u = x − y, v = x + y, then x = u+v2 , y = u−v2 (2 points)

⇒ ∂(x, y)

∂(u, v) =

1 2

1 2 1 212

= −1

2 (2 points) Z Z

R

(x + y)ex2−y2dA = Z 3

0

Z 2 0

ueuv −1

2

dvdu (3 points)

= 1 2

Z 3 0

(e2v − 1)du = 1

4(e6 − 7) (3 points) 沒用 Jacobian (+0 2)

∂(x,y)∂(u,v) 當 Jacobian (+0 4) 算 Jacobian 可是積分中沒用 (+0 6) 積分中 Jacobian 沒絕對值 (+0 8)

3. (10%) Find the circulation of the field F = −x2y i + xy2j + z2k around the curve C in which the circular cylinder x2 + y2 = 2x meets the cone z = 2px2+ y2, counterclockwise as viewed from above.

SOL1

Let g(x, y, z) = z − 2px2+ y2(or z2 − 4(x2− y2)), (1 point) then ∇g = (√−2x

x2+y2,√−2y

x2+y2, 1) ( or (−8x, −8y, 2z) ) (1 point) and ∇ × F = (x2+ y2)k (1 point)

I

CF · dt = Z Z

S∇ × F · ~ndσ (by Stoke’s thm.)

= Z Z

{(x−1)2+y2≤1}

(x2 + y2)k · ∇g

|∇g|

|∇g|

|∇g · k|dxdy (2 points)

= Z Z

{(x−1)2+y2≤1}

(x2 + y2)dxdy = Z π2

π2

Z 2 cos θ 0

r3drdθ (3 points)

= Z π2

π

(2 cos θ)4

4 dθ = 3π

2 (2 points)

(3)

SOL2

x2+ y2 = 2x ⇒ (x − 1)2+ y2 = 1 ⇒ x = cos θ + 1, y = sin θ ⇒ z = 2px2+ y2 = 2p2(cos θ + 1)

Let C(θ) = (cos θ + 1, sin θ, 2p2(cos θ + 1)) (3 points 看參數化對不對) Z

C(θ)F · dT = Z

0

(cos θ + 1, sin θ, 2p2(cos θ + 1)) · (− sin θ, cos θ, −2 sin θ

p2(cos θ + 1))dθ (3points)

= Z

0

(cos θ + 1)2sin2θ + (cos θ + 1) cos θ sin2θ − 8p2(cos θ) + 1 sin θ dθ

= 3

2π (4 points)

4. (10%) Evaluate the line integral Z

C

(yexy + 3x2y)dx + (xexy + x3 + 1)dy, where C is the circle x2+ y2 = 1 connecting the points A = (1, 0) and B = (0, 1). Orientation from B to A.

Let F (x, y) = (M(x, y), N(x, y)) = (yexy + 3x2y, xexy+ x3+ 1)

∂M

∂y = exy + xyexy+ 3x2,∂N

∂x = exy + xyexy+ 3x2 ( 3 points )

∂M

∂y = ∂N

∂x ⇒ F (x, y) is conservative .

∴there exists a function f : R2 → Rsuch that∇f = F. (1 point)

∂f

∂x = yexy+ 3x2y ⇒ f(x, y) = exy + x3y + g(y) (2 points)

∂f

∂y = xexy + x3+ g(y) = xexy + x3 + 1 ⇒ g(y) = 1 ⇒ g(y) = y ( 2 points )

∴f (x, y) = exy+ x3y + y 原式 =

Z A

B ∇f · dr = f(A) − f(B) = f(1, 0) − f(0, 1) = (1 + 0 + 0) − (1 + 0 + 1) = −1

5. (25%) A piece of surface S is cut out from z = xy + 1 by x2 + y2 = 1, and given a vector field F(x, y, z) = (xz + y, y − 3x, x2)

(a) (5%) Compute surface area of S.

(b) Suppose ∂S is the boundary of S and is oriented counterclockwise when viewed from above.

(i) (5%) Compute the line integral I

∂SF · dr directly.

(4)

(ii) (5%) Compute the line integral I

∂SF · dr by any theorem.

(c) (5%) Surface z = xy + 1, x2+ y2 = 1 and xy plane enclose a solid region V , find the total flux of F across V .

(d) (5%) (i) Find the total flux of curl F across V .

(ii) Find the total flux of curl G across V , for G is any other given smooth vector field in R3.

φ(x, y, z) = (x, y, xy + 1)

(a) φx = (1, 0, y) φx× φy = (−y, −x, 1) φy = (0, 1, x) A =R R

Dx× φy|dxdy =R R

R

y2+x2+1

1 dA (2 points)

=R 0

R1 0

√r2+ 1rdrdθ = 2π(1 + r3/2)|10 = 3 (2√

2 − 1) (3 pionts) (b) (1)

r(θ) = (cos θ, sin θ, cos θ sin θ + 1)

F (θ) = (cos2θ sin θ + cos θ + sin θ, sin θ − 3 cos θ, cos2θ) (1point) r(θ) = (− sin θ, cos θ, cos2θ − sin2θ)(1point)

I

Fdr = Z

0 − sin2θ cos2θ − sin θ cos θ − sin2θ + sin θ cos θ − 3 cos2θ + cos4θ − cos2θ sin2θ dθ

= Z

0 −1

2sin22θ − 1 − cos 2θ

2 − 31 + cos 2θ

2 +(1 + cos 2θ)2

4 dθ

= −15

4 π (3 points) (2)

∇F = (0, −x, −4) (1 point)

I

Fdr = Z Z

S∇ × F · ~ndσ = Z Z

D

(x2− 4)dxdy (1 point)

= Z

0

Z 1 0

(r2cos2θ − 4)rdrdθ

= Z

0

 1

4cos2θ − 2

 dθ

= 1

π − 2 · 2π = −15

π (3 points)

(5)

(c)

Z Z

∂V F · ~ndA =

Z Z Z

V

divFdσ

=

Z Z Z

V

(z + 1)dσ = Z

0

Z 1 0

Z r2cos θ sin θ+1 0

(z + 1)dzrdrdθ

= 73

48π (3 points) (d)

(1)R R

∂V ∇ × F · ~ndS =H

φF · dr = 0 (2 points) (2)R R

∂V ∇ × G · ~n =R R R

V div(∇ × G)dS = 0 (3 points)

(6)

6. (15%) Find the outward flux of the vector field V(x, y, z) = (rx3 + 2y + 3z)i + (ry3 + x + 3z)j + (rz3 + x + 2y)k across the boundary of the ellipsoid region D = 11x2 + 12y2+ 13z2 ≤ 14 where r =px2+ y2+ z2. (No points without complete computation and explanation.)

V is not differentiable in D since v = 0 at (x, y, z) = (0, 0, 0) so we take the ball B = {(x, y, z)|x2+ y2+ z2 < 1} in D and consider the region Ω = D − B with ∂Ω = ∂D + ∂B

Since V is differentiable in Ω, we can apply divergence theorem. (4 points)

divV = ∂

∂x(x

r3 + 2y + 3z) + ∂

∂y(y

r3 + 3z) ∂

∂z(z

r3 + x + 2y)

= 0 (3 points)

Z Z

∂ΩV · ~ndσ =

Z Z Z

divV dV = 0

Z Z

∂DV · ~ndσ = − Z Z

∂BV · ~ndσ (2 points)

~n = (−x, −y, −z) at ∂B , −V · ~n = 1 + 3xy + 4xz + 5yz (1 point)

Let ∂B+ = {(x, y, z) ∈ ∂B|z > 0} and ∂B+ = {(x, y, z) ∈ ∂B|z < 0} C = {(x, y)|x2+ y2 ≤ 1}

Then −R R

∂BV · ~ndσ = −R R

∂B+V · ~ndσ + −R R

∂BV · ~ndσ (2 points)

Let r+(x, y) = (x, y,p1 − x2− y2) and r(x, y) = (x, y, −p1 − x2− y2), Then |rx+ × r+y| =

|rx× ry| = √ 1

1−x2−y2

− Z Z

∂BV · ~ndσ = − Z Z

∂B+V · ~ndσ + − Z Z

∂BV · ~ndσ = Z Z

C

2 1 + 3xy p1 − x2− y2dA

= Z

0

Z 1 0

21 + 3r2cos θ sin θ

√1 − r2 rdrdθ

= 4π (3 points)

(7)

7. (15%) Find T (unit tangent vector), N (principal unit vector), B (unit binormal vector), κ (curvature) and τ (torsion) for the space curve r(t) = (etsin 2t)i + (etcos 2t)j + 2etk at t = π

2. We calculate r(t), r′′(t), r′′′(t) directly:

r(t) = (etsin 2t + 2etcos 2t, −2etsin 2t + etcos 2t, 2et), r(π2) = eπ2(−2, −1, 2) r′′(t) = (−3etsin 2t + 2etcos 2t, −4etsin 2t − 3etcos 2t, 2et), r′′(π2) = eπ2(−4, 3, 2) r′′′(t) = (−11etsin 2t − 2etcos 2t, 2etsin 2t − 11etcos 2t, 2et), r′′′(π2) = eπ2(2, 11, 2) and |r(t)| = 3et

So, we have

T|t=π2 = r(t)

|r(t)|

t=π2

= (etsin 2t + 2etcos 2t, −2etsin 2t + etcos 2t, 2et) 3et

t=π2

=



−2 3, −1

3,2 3



Since dT

dt = 2 cos 2t − 4 sin 2t

3 ,−4 cos 2t − 2 sin 2t

3 , 0



we get the unit normal vector

N|t=π2 =

dT dt

|dTdt| t=π2

= (−23,43, 0) q(−23)2+ (43)2+ 02

=



− 1

√5, 2

√5, 0



By definition, we have B|t=π2 = (T × N)|t=π2 = −4/2√

5, −2/3√

5, −5/3√ 5 Next, at t = π2

κ =

dT ds

=

dT dt

dt ds

=

dT dt

1

|r(t)| = 2√ 5 9eπ2 Finally, at t = π2

τ = (r × r′′) ∧ r′′′

|r × r′′|2 =

−2 −1 2

−4 3 2

2 11 2

180eπ2 = − 4 9eπ2

參考文獻

相關文件

Please check your answers before you turn in your

5、 Applications of the Integral 6、 Transcendental Functions 7、 Techniques of Integration. PDF created with FinePrint pdfFactory trial

[r]

[r]

[r]

(a) The points are split into ”A clear understanding of Green’s Theorem” (3%), ”Correctly setting up the iterated integral for the given region” (2%), and ”Ability to

Find all the local maximum, local minimum and saddle points

Hence by using