• 沒有找到結果。

Hence lim x→π6 2 sin2x + sin x − 1 2 sin2x − 3 sin x + 1 = lim x→π6 sin x + 1 sin x − 1 = sinπ6 + 1 sinπ

N/A
N/A
Protected

Academic year: 2022

Share "Hence lim x→π6 2 sin2x + sin x − 1 2 sin2x − 3 sin x + 1 = lim x→π6 sin x + 1 sin x − 1 = sinπ6 + 1 sinπ "

Copied!
6
0
0

加載中.... (立即查看全文)

全文

(1)

(1) (28 Points) Evaluate (a) lim

x→π6

2 sin2x + sin x − 1 2 sin2x − 3 sin x + 1. Solution:

For x 6= π

6, we have

2 sin2x + sin x − 1

2 sin2x − 3 sin x + 1 =(2 sin x − 1)(sin x + 1) (2 sin x − 1)(sin x − 1)

=sin x + 1 sin x − 1. Hence

lim

x→π6

2 sin2x + sin x − 1

2 sin2x − 3 sin x + 1 = lim

x→π6

sin x + 1

sin x − 1 = sinπ6 + 1 sinπ6 − 1 =

1 2+ 1

1

2− 1 = −3.

(b) lim

x→0

1 − cos x x2 . Solution:

For x 6= 0,

1 − cos x

x2 = 2 sin2 x2 x

= 1 2

 sinx2

x 2

2 .

Here we use 1 − cos x = 2 sin2x

2. Since lim

θ→0

sin θ

θ , we find

x→0lim

1 − cos x x2 = lim

x→0

1 2

 sinx2

x 2

2

=1

2 · 12=1 2. (c) lim

x→0

tan 3x sin 8x. Solution:

For x 6= 0, we write tan 3x

sin 8x = 8x

sin 8x·sin 3x 3x · 1

cos 3x·3 8. Since lim

x→0

sin θ

θ = cos θ = 1, we find

x→0lim tan 3x sin 8x = lim

x→0

 8x

sin 8x· sin 3x 3x · 1

cos 3x·3 8



= 3

8· 1 · 1 · 1 = 3 8.

1

(2)

(d) lim

x→1

x + x2+ · · · + xn− n

x − 1 .

Solution:

Write xk− 1 = (x − 1)(xk−1+ · · · + x + 1). Hence

x + x2+ · · · + xn− n =

n

X

k=1

xk

!

− n

=

n

X

k=1

(xk− 1)

=

n

X

k=1

(x − 1)(xk−1+ · · · + x + 1)

= (x − 1)

n

X

k=1

(xk−1+ · · · + x + 1).

For x 6= 1,

x + x2+ · · · + xn− n

x − 1 =

n

X

k=1

(xk−1+ · · · + x + 1).

By properties of limits and the continuity of polynomials, we have

x→1lim

x + x2+ · · · + xn− n

x − 1 =

n

X

k=1

k = n(n + 1)

2 .

(e) lim

x→0

√1 + tan x −√

1 + sin x

x3 .

Solution:

Using the formula A2− B2= (A + B)(A − B), we write

√1 + tan x −√

1 + sin x = tan x − sin x

√1 + tan x +√

1 + sin x

= 1

√1 + tan x +√

1 + sin x

 sin x cos x− sin x



= 1

√1 + tan x +√

1 + sin x· sin x

cos x(1 − cos x).

Hence we know

√1 + tan x −√

1 + sin x

x3 = 1

√1 + tan x +√

1 + sin x·sin x x · 1

cos x·1 − cos x x2 .

(3)

Note that lim

x→0

√ 1

1 + tan x +√

1 + sin x = 1

2, and lim

x→0

sin x

x = 1 and lim

x→0

1

cos x = 1 and

x→0lim

1 − cos x x2 = 1

2, we obtain

x→0lim

√1 + tan x −√

1 + sin x

x3 = 1

2· 1 · 1 ·1 2 = 1

4. (f) lim

x→∞(p3

x3+ 3x2−p

x2− 2x).

Solution:

x We use the formula A6− B6= (A − B)(A5+ A4B + A3B2+ A2B3+ AB4+ B5).

Write p3

x3+ 3x2−p

x2− 2x = ((x3+ 3x2)2− (x2− 2x)3)

· {(x3+ 3x2)53 + (x3+ 3x2)43(x2− 2x)12

+ (x3+ 3x2)43(x2− 2x)22 + (x3+ 3x2)23(x2− 2x)32 + (x3+ 3x2)13(x2− 2x)42 + (x2− 2x)52}−1

= (12 − 3 x+ 8

x2)

· {(1 + 3

x)53 + (1 + 3

x)43(1 − 2 x)12 + (1 + 3

x)33(1 − 2

x)22 + (1 + 3

x)23(1 − 2 x)32 + (1 + 3

x)13(1 − 2

x)42 + (1 − 2 x)52}−1. Hence

x→∞lim(p3

x3+ 3x2−p

x2− 2x) = 12 6 = 2.

(g) lim

x→π2cos



2x + sin(3π 2 + x)

 . Solution:

lim

x→π2cos



2x + sin(3π 2 + x)



= cos

 lim

x→π2 2x + lim

x→π2sin(3π 2 + x)



= cos(2 ·π

2 + sin 2π)

= cos π = −1.

(2) (12 Points) Evaluate (a)

Z

3 2

1 2

p1 − x2dx.

(4)

Solution: The integral is the area of the region DEIH. We write

Z

3 2

1 2

p1 − x2dx = Z

3 2

0

p1 − x2dx − Z 1

2

0

p1 − x2dx.

We know Z

3 2

0

p1 − x2dx equals the area of the region AEIC and Z 12

0

p1 − x2dx equals the area of the region ADHC.

Since the area of the region EBI is given by π

12 −1 2 ·

√3 2 ·1

2 (area of ∆AEI) = π 12−

√3 8 , the area of the region AEIH is given by

π 4 − π

12−

√3 8

!

=π 6 +

√3 8 . In other words,

Z

3 2

0

p1 − x2dx = π 6 +

√3 8 .

Similarly, we know the area of the region DBH is given by π

8 −1 2 · 1

√2· 1

√2(area of ∆ADH) = π 8 −1

4. Hence the area of the region ADHC is given by

π 4 − π

8 −1 4



= π 8 +1

4.

(5)

In other words,

Z 1

2

0

p1 − x2dx = π 8 +1

4. We conclude that

Z

3 2

1 2

p1 − x2dx = π 6 +

√3 8

!

− π 8 +1

4



= π 24+

√3 − 2 8 .

(b) Z 6

3

[x]dx. Here [x] is the Gauss-symbol of x.

Solution:

The integral of f (x) over [3, 6] is the sum of all areas of the region I, II, II. Hence Z 6

3

[x]dx = 1 · 3 + 1 · 4 + 1 · 5 = 12.

(c) Z 2

−1

f (x)dx. Here

f (x) =









2x + 2 if −1 ≤ x ≤ −1/2,

−4x − 1 if −1/2 < x ≤ 0, x − 1 if 0 < x ≤ 1, 1 if 1 < x ≤ 2.

Solution:

(6)

The integral Z 2

−1

f (x)dx equals the sum of areas of I and III minus the area of II, i.e.

Z 2

−1

f (x)dx = A(I) − A(II) + A(III).

The area of I, II, II are given by A(I) = 1

2 ·3 4 · 1 = 3

8(area of ∆ABH) A(II) = 1

2 ·5 4 · 1 = 5

8(area of ∆CDH) A(III) = 1 · 1(area of the square DGF E).

Hence

Z 2

−1

f (x)dx = 3 8−5

8 + 1 = 3 4.

參考文獻

相關文件

(1) Determine whether the series converges or diverges.. Write c if it is convergent and d if it

Calculus 1, Quiz 5 Instructor: Frank Liou.. Exam Time:

[r]

(Using Extreme Value Theorem) Compare the critical value and values at boundaries :. Page 8

(3) Critical numbers (5 points): This includes finding the correct derivative, correctly solving the roots, and discuss which ones are relevant to our problem.. -3 for any major

This is the point we would like to ap- proximate

(2) (1 points) Correct evaluation with the (right or wrong) obtained result of second time implicit differ- entiation to obtain y ′′ (1) deserves the rest 1 points.. In the second

1% for increasing and decreasing intervals, 1% for the concavity, and 1% for