• 沒有找到結果。

Section 13.2 Derivatives and Integrals of Vector Functions

N/A
N/A
Protected

Academic year: 2022

Share "Section 13.2 Derivatives and Integrals of Vector Functions"

Copied!
1
0
0

加載中.... (立即查看全文)

全文

(1)

Section 13.2 Derivatives and Integrals of Vector Functions

24. If r(t) =< e2t, e−3t, t >, find r0(0), T(0), r00(0), and r0(0) × r00(0).

Solution:

1288 ¤ CHAPTER 13 VECTOR FUNCTIONS

19. r() = cos  i + 3 j + 2 sin 2 k ⇒ r0() = − sin  i + 3 j + 4 cos 2 k ⇒ r0(0) = 3 j + 4 k. So

|r0(0)| =√

02+ 32+ 42 =√

25 = 5and T(0) = r0(0)

|r0(0)| = 15(3 j + 4 k) = 35j+ 45k.

20. r() = sin2 i + cos2 j + tan2 k ⇒ r0() = 2 sin  cos  i − 2 cos  sin  j + 2 tan  sec2 k ⇒ r0

4

= 2 ·22· 22i− 2 ·22 ·22j+ 2 · 1 · (√

2)2k= i − j + 4 k. Sor0

4=√

12+ 12+ 42=√

18 = 3√ 2 and T

4

= r0

4

r0

4 = 1 3√

2(i − j + 4 k) = 1 3√

2i− 1 3√

2j+ 4 3√

2k.

21. The point (2 −2 4) corresponds to  = 1 [note that 4 = 4]. Then r() =

3+ 1 3 − 5 4

⇒ r0() =

32 3 −42

⇒ r0(1) = h3 3 −4i

So |r0(1)| =

32+ 32+ (−4)2=√ 34

and T(1) = r0(1)

|r0(1)| = 1

√34h3 3 −4i =

 3

√34 3

√34 − 4

√34

22. The point (0 0 1) corresponds to  = 0 [note that 5 = 0]. Then

r() = sin  i + 5 j + cos  k ⇒ r0() = cos  i + 5 j − sin  k ⇒ r0(0) = i + 5 j

So |r0(0)| =√

12+ 52+ 02=√ 26

and T(0) = r0(0)

|r0(0)|= 1

√26(i + 5j) = 1

√26i+ 5

√26j

23. r() =

4  2

⇒ r0() =

43 1 2. Then r0(1) = h4 1 2i, |r0(1)| =√

42+ 12+ 22=√ 21, and

T(1) = r0(1)

|r0(1)| = 1

√21h4 1 2i =

 4

√21 1

√21 2

√21

r00() =

122 0 2 , so

r0() × r00() =









i j k

43 1 2

122 0 2









=





 1 2

0 2





i−





43 2

122 2





j+





 43 1 122 0





k

= (2 − 0) i − (83− 243) j + (0 − 122) k =

2 163 −12224. r() =

2 −3 

⇒ r0() =

22 −3−3 1. Then r0(0) = h2 −3 1i, |r0(0)| =

22+ (−3)2+ 12=√14, and

T(0) = r0(0)

|r0(0)| = 1

√14h2 −3 1i =

 2

√14 − 3

√14 1

√14

r00() =

42 9−3 0

⇒ r00(0) = h4 9 0i. Then

r0(0) × r00(0) =







i j k

2 −3 1

4 9 0







=





−3 1

9 0





i−





 2 1 4 0





j+





 2 −3

4 9





k

= (0 − 9) i − (0 − 4) j + [18 − (−12)] k = h−9 4 30i

° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

28. Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.

x =p

t2+ 3, y = ln(t2+ 3), z = t; (2, ln 4, 1) Solution:

SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS ¤ 1289 25. The vector equation for the curve is r() =

2+ 1 4√

 2−

, so r0() = 2 2√

 (2 − 1)2−

. The point (2 4 1) corresponds to  = 1, so the tangent vector there is r0(1) = h2 2 1i. Thus, the tangent line goes through the point (2 4 1) and is parallel to the vector h2 2 1i. Parametric equations are  = 2 + 2,  = 4 + 2,  = 1 + .

26. The vector equation for the curve is r() =

ln( + 1)  cos 2 2, so r0() =

1( + 1) cos 2 − 2 sin 2 2ln 2. The point (0 0 1) corresponds to  = 0, so the tangent vector there is r0(0) = h1 1 ln 2i. Thus, the tangent line goes through the point (0 0 1) and is parallel to the vector h1 1 ln 2i. Parametric equations are  = 0 + 1 ·  = ,  = 0 + 1 ·  = ,

 = 1 + (ln 2).

27. The vector equation for the curve is r() =

−cos  −sin  −, so r0() =

−(− sin ) + (cos )(−−), −cos  + (sin )(−−), (−−)

=

−−(cos  + sin ) −(cos  − sin ) −− The point (1 0 1) corresponds to  = 0, so the tangent vector there is

r0(0) =

−0(cos 0 + sin 0) 0(cos 0 − sin 0) −0

= h−1 1 −1i. Thus, the tangent line is parallel to the vector h−1 1 −1i and parametric equations are  = 1 + (−1) = 1 − ,  = 0 + 1 ·  = ,  = 1 + (−1) = 1 − .

28. The vector equation for the curve is r() =√

2+ 3 ln(2+ 3) 

, so r0() =

√

2+ 3 2(2+ 3) 1

. At (2 ln 4 1),

 = 1and r0(1) =1

212 1

. Thus, parametric equations of the tangent line are  = 2 + 12,  = ln 4 +12,  = 1 + .

29. First we parametrize the curve  of intersection. The projection of  onto the ­plane is contained in the circle

2+ 2= 25,  = 0, so we can write  = 5 cos ,  = 5 sin .  also lies on the cylinder 2+ 2= 20, and  ≥ 0 near the point (3 4 2), so we can write  =

20 − 2=

20 − 25 sin2. A vector equation then for  is r() =

5 cos  5 sin 

20 − 25 sin2

⇒ r0() =

−5 sin  5 cos 12(20 − 25 sin2)−12(−50 sin  cos ) . The point (3 4 2) corresponds to  = cos−13

5

, so the tangent vector there is

r0

cos−13

5

=

−54

5

 53

5

12

20 − 254

5

2−12

−504

5

3

5



= h−4 3 −6i.

The tangent line is parallel to this vector and passes through (3 4 2), so a vector equation for the line is r() = (3 − 4)i + (4 + 3)j + (2 − 6)k.

30. r() =

2 cos  2 sin  

⇒ r0() =

−2 sin  2 cos  . The tangent line to the curve is parallel to the plane when the curve’s tangent vector is orthogonal to the plane’s normal vector. Thus we require

−2 sin  2 cos  

·√

3 1 0

= 0 ⇒

−2√

3 sin  + 2 cos  + 0 = 0 ⇒ tan  = 13 ⇒  =6 [since 0 ≤  ≤ ].

r

6

=√

3 1 6

, so the point is (√

3 1 6).

° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

30. Find the point on the curve r(t) =< 2 cos t, 2 sin t, et >, 0 ≤ t ≤ π, where the tangent line is parallel to the plane

3x + y = 1.

Solution:

SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS ¤ 329 23. The vector equation for the curve is r() =

2+ 1 4√

 2−

, so r0() = 2 2√

 (2 − 1)2−

. The point (2 4 1) corresponds to  = 1, so the tangent vector there is r0(1) = h2 2 1i. Thus, the tangent line goes through the point (2 4 1) and is parallel to the vector h2 2 1i. Parametric equations are  = 2 + 2,  = 4 + 2,  = 1 + .

24. The vector equation for the curve is r() =

ln( + 1)  cos 2 2, so r0() =

1( + 1) cos 2 − 2 sin 2 2ln 2. The point (0 0 1) corresponds to  = 0, so the tangent vector there is r0(0) = h1 1 ln 2i. Thus, the tangent line goes through the point (0 0 1) and is parallel to the vector h1 1 ln 2i. Parametric equations are  = 0 + 1 ·  = ,  = 0 + 1 ·  = ,

 = 1 + (ln 2).

25. The vector equation for the curve is r() =

−cos  −sin  −, so r0() =

−(− sin ) + (cos )(−−), −cos  + (sin )(−−), (−−)

=

−−(cos  + sin ) −(cos  − sin ) −− The point (1 0 1) corresponds to  = 0, so the tangent vector there is

r0(0) =

−0(cos 0 + sin 0) 0(cos 0 − sin 0) −0

= h−1 1 −1i. Thus, the tangent line is parallel to the vector h−1 1 −1i and parametric equations are  = 1 + (−1) = 1 − ,  = 0 + 1 ·  = ,  = 1 + (−1) = 1 − .

26. The vector equation for the curve is r() = 1 + 2√

 3−  3+ , so r0() = 1√

 32− 1 32+ 1. The point (3 0 2)corresponds to  = 1, so the tangent vector there is r0(1) = h1 2 4i. Thus, the tangent line goes through the point (3 0 2)and is parallel to the vector h1 2 4i. Parametric equations are  = 3 + ,  = 2,  = 2 + 4.

27. First we parametrize the curve  of intersection. The projection of  onto the -plane is contained in the circle

2+ 2 = 25,  = 0, so we can write  = 5 cos ,  = 5 sin .  also lies on the cylinder 2+ 2= 20, and  ≥ 0 near the point (3 4 2), so we can write  =

20 − 2=

20 − 25 sin2. A vector equation then for  is r() =

5 cos  5 sin 

20 − 25 sin2

⇒ r0() =

−5 sin  5 cos 12(20 − 25 sin2)−12(−50 sin  cos ) . The point (3 4 2) corresponds to  = cos−13

5

, so the tangent vector there is

r0

cos−13 5

=

−54 5

 53 5

12

20 − 254 5

2−12

−504 5

3 5



= h−4 3 −6i.

The tangent line is parallel to this vector and passes through (3 4 2), so a vector equation for the line is r() = (3 − 4)i + (4 + 3)j + (2 − 6)k.

28. r() =

2 cos  2 sin  

⇒ r0() =

−2 sin  2 cos  . The tangent line to the curve is parallel to the plane when the curve’s tangent vector is orthogonal to the plane’s normal vector. Thus we require

−2 sin  2 cos  

·√

3 1 0

= 0 ⇒

−2√

3 sin  + 2 cos  + 0 = 0 ⇒ tan  = 13 ⇒  =6 [since 0 ≤  ≤ ].

r

6

=√

3 1 6

, so the point is (√

3 1 6).

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

參考文獻

相關文件

The Vertical Line Test A curve in the xy-plane is the graph of a function of x if and only if no vertical line intersects the curve more than once.. The reason for the truth of

3m long is revolved about one of its leg to generate a right circular cone.. Find the radius, height, and volume of the cone of the greatest volume that can be made

We can use the point (2 2) to determine the scale of the axes, and we estimate the length of the projection to be approximately 3.0 units.. All

parallel to this line, pointing in the direction of increasing function values, and with length equal to the maximum value of the directional derivative of  at (4 6).. We can

To see that this is true without using calculus, note that G = 0 is the equation of a sphere centered at the origin and F = 0 is the equation of a right circular cone with vertex at

The tangent line to the curve is parallel to the plane when the curve’s tangent vector is orthogonal to the plane’s normal vector.. All

After zooming in, the surface and the tangent plane become almost indistinguishable, as shown in the second graph.. (Here, the tangent plane is above the surface.) If we zoom

After zooming in, the surface and the tangent plane become almost indistinguishable, as shown in the second graph.. (Here, the tangent plane is above the surface.) If we zoom