• 沒有找到結果。

Section 13.2 Derivatives and Integrals of Vector Functions

N/A
N/A
Protected

Academic year: 2022

Share "Section 13.2 Derivatives and Integrals of Vector Functions"

Copied!
1
0
0

加載中.... (立即查看全文)

全文

(1)

Section 13.2 Derivatives and Integrals of Vector Functions

SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS ¤ 327

6.r() = i+ 2 j, r(0) = i.

Since  =  ⇔  = ln  and

 = 2 = 2 ln , the curve is the graph of  = 2 ln .

(a), (c) (b) r0() = i+ 2 j,

r0(0) = i + 2 j

7.r() = 4 sin  i − 2 cos  j, r(34) = 4(√

22) i − 2(−√

22) j = 2√ 2 i +√

2 j.

Here (4)2+ (2)2= sin2 + cos2 = 1, so the curve is the ellipse2 16+2

4 = 1.

(a), (c) (b) r0() = 4 cos  i + 2 sin  j,

r0(34) = −2√ 2 i +√

2 j.

8.r() = (cos  + 1) i + (sin  − 1) j, r(−3) =1

2+ 1 i+

23− 1

j=32i+

23− 1

j≈ 15 i − 187 j.

Here ( − 1)2+ ( + 1)2= cos2 + sin2 = 1, so the curve is a circle of radius 1 with center (1 −1).

(a), (c) (b) r0() = − sin  i + cos  j,

r0(−3) = 23i+12j≈ 087 i + 05 j

9.r() =√

 − 2 3 12

⇒ r0() =





√ − 2

 

[3]  



12

=

1

2( − 2)−12 0 −2−3

=

 1

2√

 − 2 0 −2

3

10.r() =

−  − 3 ln 

⇒ r0() =

−− 1 − 32 1 11. r() = 2i+ cos

2

j+ sin2 k ⇒ r0() = 2 i +

− sin(2) · 2

j+ (2 sin  · cos ) k = 2 i − 2 sin(2) j + 2 sin  cos  k

12.r() = 1

1 + i+ 

1 + j+ 2 1 + k ⇒ r0() = 0 − 1(1)

(1 + )2 i+(1 + ) · 1 − (1)

(1 + )2 j+(1 + ) · 2 − 2(1)

(1 + )2 k= − 1

(1 + )2 i+ 1

(1 + )2 j+ 2+ 2

(1 + )2k 13.r() =  sin  i + cos  j + sin  cos  k ⇒

r0() = [ · cos  + (sin ) · 1] i +

(− sin ) + (cos )

j+ [(sin )(− sin ) + (cos )(cos )] k

= ( cos  + sin ) i + (cos  − sin ) j +

cos2 − sin2 k

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

328 ¤ CHAPTER 13 VECTOR FUNCTIONS

14. r() = sin2 i + j+ cos2 k ⇒ r0() = [2(sin ) · (cos )()] i +

 · () + · 1

j+ [2(cos ) · (− sin )()] k

= 2 sin  cos  i + ( + 1) j − 2 sin  cos  k 15. r0() = 0 + b + 2 c = b + 2 cby Formulas 1 and 3 of Theorem 3.

16. To find r0(), we first expand r() =  a × (b +  c) = (a × b) + 2(a × c), so r0() = a × b + 2(a × c).

17. r() =

2− 2 1 + 3133+122

⇒ r0() =

2 − 2 3 2+ 

⇒ r0(2) = h2 3 6i.

So |r0(2)| =√

22+ 32+ 62=√

49 = 7and T(2) = r0(2)

|r0(2)|= 17h2 3 6i =2 73767. 18. r() =

tan−1 22 8

⇒ r0() =

1(1 + 2) 42 8+ 8

⇒ r0(0) = h1 4 8i.

So |r0(0)| =√

12+ 42+ 82=√

81 = 9and T(0) = r0(0)

|r0(0)|= 19h1 4 8i =1 94989. 19. r0() = − sin  i + 3 j + 4 cos 2 k ⇒ r0(0) = 3 j + 4 k. Thus

T(0) = r0(0)

|r0(0)|= 1

√02+ 32+ 42 (3 j + 4 k) =15(3 j + 4 k) =35j+45k.

20. r0() = 2 sin  cos  i − 2 cos  sin  j + 2 tan  sec2 k ⇒ r0

4

= 2 ·22·22i− 2 ·22·22j+ 2 · 1 · (√

2)2k= i − j + 4 k andr0 4=√

1 + 1 + 16 =√

18 = 3√ 2. Thus

T 4

= r0 4

r0 4 = 1

3√

2(i − j + 4 k) = 1 3√

2i− 1 3√

2j+ 4 3√

2k.

21. r() =

 2 3

⇒ r0() =

1 2 32. Then r0(1) = h1 2 3i and |r0(1)| =√

12+ 22+ 32=√ 14, so

T(1) = r0(1)

|r0(1)|= 114h1 2 3i =

1 142

143 14

. r00() = h0 2 6i, so

r0() × r00() =







i j k

1 2 32 0 2 6







=





 2 32

2 6





i −





 1 32 0 6





j +





 1 2

0 2





k

= (122− 62) i − (6 − 0) j + (2 − 0) k =

62 −6 2 22. r() =

2 −2 2

⇒ r0() =

22 −2−2 (2 + 1)2

⇒ r0(0) =

20 −20 (0 + 1)0

= h2 −2 1i and |r0(0)| =

22+ (−2)2+ 12= 3. Then T(0) = r0(0)

|r0(0)|= 13h2 −2 1i =2

3 −2313. r00() =

42 4−2 (4 + 4)2

⇒ r00(0) =

40 40 (0 + 4)0

= h4 4 4i.

r0() · r00() =

22 −2−2 (2 + 1)2

·

42 4−2 (4 + 4)2

= (22)(42) + (−2−2)(4−2) + ((2 + 1)2)((4 + 4)2)

= 84− 8−4+ (82+ 12 + 4)4= (82+ 12 + 12)4− 8−4

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

328 ¤ CHAPTER 13 VECTOR FUNCTIONS

14. r() = sin2 i + j+ cos2 k ⇒ r0() = [2(sin ) · (cos )()] i +

 · () + · 1

j+ [2(cos ) · (− sin )()] k

= 2 sin  cos  i + ( + 1) j − 2 sin  cos  k 15. r0() = 0 + b + 2 c = b + 2 cby Formulas 1 and 3 of Theorem 3.

16. To find r0(), we first expand r() =  a × (b +  c) = (a × b) + 2(a × c), so r0() = a × b + 2(a × c).

17. r() =

2− 2 1 + 3133+122

⇒ r0() =

2 − 2 3 2+ 

⇒ r0(2) = h2 3 6i.

So |r0(2)| =√

22+ 32+ 62=√

49 = 7and T(2) = r0(2)

|r0(2)|= 17h2 3 6i =2 73767. 18. r() =

tan−1 22 8

⇒ r0() =

1(1 + 2) 42 8+ 8

⇒ r0(0) = h1 4 8i.

So |r0(0)| =√

12+ 42+ 82=√

81 = 9and T(0) = r0(0)

|r0(0)|= 19h1 4 8i =1 94989. 19. r0() = − sin  i + 3 j + 4 cos 2 k ⇒ r0(0) = 3 j + 4 k. Thus

T(0) = r0(0)

|r0(0)|= 1

√02+ 32+ 42 (3 j + 4 k) =15(3 j + 4 k) =35j+45k.

20. r0() = 2 sin  cos  i − 2 cos  sin  j + 2 tan  sec2 k ⇒ r0

4

= 2 ·22·22i− 2 ·22·22j+ 2 · 1 · (√

2)2k= i − j + 4 k andr0 4=√

1 + 1 + 16 =√

18 = 3√ 2. Thus

T 4

= r0 4

r0

4 = 1 3√

2(i − j + 4 k) = 1 3√

2i− 1 3√

2j+ 4 3√

2k.

21. r() =

 2 3

⇒ r0() =

1 2 32. Then r0(1) = h1 2 3i and |r0(1)| =√

12+ 22+ 32=√ 14, so

T(1) = r0(1)

|r0(1)|= 114h1 2 3i =

1 142

143 14

. r00() = h0 2 6i, so

r0() × r00() =







i j k

1 2 32 0 2 6







=





 2 32

2 6





i −





 1 32 0 6





j +





 1 2

0 2





k

= (122− 62) i − (6 − 0) j + (2 − 0) k =

62 −6 2 22. r() =

2 −2 2

⇒ r0() =

22 −2−2 (2 + 1)2

⇒ r0(0) =

20 −20 (0 + 1)0

= h2 −2 1i and |r0(0)| =

22+ (−2)2+ 12= 3. Then T(0) = r0(0)

|r0(0)|= 13h2 −2 1i =2

3 −2313. r00() =

42 4−2 (4 + 4)2

⇒ r00(0) =

40 40 (0 + 4)0

= h4 4 4i.

r0() · r00() =

22 −2−2 (2 + 1)2

·

42 4−2 (4 + 4)2

= (22)(42) + (−2−2)(4−2) + ((2 + 1)2)((4 + 4)2)

= 84− 8−4+ (82+ 12 + 4)4= (82+ 12 + 12)4− 8−4

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS ¤ 329 23. The vector equation for the curve is r() =

2+ 1 4√

 2−

, so r0() = 2 2√

 (2 − 1)2−

. The point (2 4 1) corresponds to  = 1, so the tangent vector there is r0(1) = h2 2 1i. Thus, the tangent line goes through the point (2 4 1) and is parallel to the vector h2 2 1i. Parametric equations are  = 2 + 2,  = 4 + 2,  = 1 + .

24. The vector equation for the curve is r() =

ln( + 1)  cos 2 2, so r0() =

1( + 1) cos 2 − 2 sin 2 2ln 2. The point (0 0 1) corresponds to  = 0, so the tangent vector there is r0(0) = h1 1 ln 2i. Thus, the tangent line goes through the point (0 0 1) and is parallel to the vector h1 1 ln 2i. Parametric equations are  = 0 + 1 ·  = ,  = 0 + 1 ·  = ,

 = 1 + (ln 2).

25. The vector equation for the curve is r() =

−cos  −sin  −, so

r0() =−(− sin ) + (cos )(−−), −cos  + (sin )(−−), (−−)

=

−−(cos  + sin ) −(cos  − sin ) −− The point (1 0 1) corresponds to  = 0, so the tangent vector there is

r0(0) =

−0(cos 0 + sin 0) 0(cos 0 − sin 0) −0

= h−1 1 −1i. Thus, the tangent line is parallel to the vector h−1 1 −1i and parametric equations are  = 1 + (−1) = 1 − ,  = 0 + 1 ·  = ,  = 1 + (−1) = 1 − .

26. The vector equation for the curve is r() =√

2+ 3 ln(2+ 3) , so r0() =

√

2+ 3 2(2+ 3) 1. At (2 ln 4 1),

 = 1and r0(1) =1

212 1. Thus, parametric equations of the tangent line are  = 2 +12,  = ln 4 +12,  = 1 + .

27. First we parametrize the curve  of intersection. The projection of  onto the -plane is contained in the circle

2+ 2= 25,  = 0, so we can write  = 5 cos ,  = 5 sin .  also lies on the cylinder 2+ 2= 20, and  ≥ 0 near the point (3 4 2), so we can write  =

20 − 2=

20 − 25 sin2. A vector equation then for  is r() =

5 cos  5 sin 

20 − 25 sin2

⇒ r0() =

−5 sin  5 cos 12(20 − 25 sin2)−12(−50 sin  cos ) . The point (3 4 2) corresponds to  = cos−13

5

, so the tangent vector there is

r0 cos−13

5

=

−54

5

 53

5

12

20 − 254

5

2−12

−504

5

3

5



= h−4 3 −6i.

The tangent line is parallel to this vector and passes through (3 4 2), so a vector equation for the line is r() = (3 − 4)i + (4 + 3)j + (2 − 6)k.

28. r() =

2 cos  2 sin  

⇒ r0() =

−2 sin  2 cos  . The tangent line to the curve is parallel to the plane when the curve’s tangent vector is orthogonal to the plane’s normal vector. Thus we require

−2 sin  2 cos  

·√

3 1 0

= 0 ⇒

−2√

3 sin  + 2 cos  + 0 = 0 ⇒ tan  = 13 ⇒  =6 [since 0 ≤  ≤ ].

r 6

=√

3 1 6

, so the point is (√

3 1 6).

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS ¤ 331

r02() = hcos  2 cos 2 1i and since r2(0) = h0 0 0i, r02(0) = h1 2 1i is a tangent vector to r2at (0 0 0). If  is the angle between these two tangent vectors, then cos  =1

1

6h1 0 0i · h1 2 1i = 16and  = cos−1

1 6

≈ 66.

34. To find the point of intersection, we must find the values of  and  which satisfy the following three equations simultaneously:

 = 3 − , 1 −  =  − 2, 3 + 2= 2. Solving the last two equations gives  = 1,  = 2 (check these in the first equation).

Thus the point of intersection is (1 0 4). To find the angle  of intersection, we proceed as in Exercise 33. The tangent vectors to the respective curves at (1 0 4) are r01(1) = h1 −1 2i and r02(2) = h−1 1 4i. So

cos  = 6118(−1 − 1 + 8) =663 =13 and  = cos−1

1 3

≈ 55.

Note: In Exercise 33, the curves intersect when the value of both parameters is zero. However, as seen in this exercise, it is not necessary for the parameters to be of equal value at the point of intersection.

35.2

0 ( i − 3j+ 35k)  =2 0  

i−2 03

j+2 0 35

k

=1

222 0i−1

442 0 j+1

262 0 k

=12(4 − 0) i −14(16 − 0) j +12(64 − 0) k = 2 i − 4 j + 32 k

36.

4 1

232i+ ( + 1)√

 k

 =4

1 232 i+4

1 (32+ 12)  k

=

4 5524

1 i+

2

552+23324 1k

= 45(452− 1) i +

2

5(4)52+23(4)322523

 k

= 45(31) i +2

5(32) +23(8) −2523

k=1245 i+25615 k

37.

1 0

 1

 + 1 i+ 1

2+ 1 j+ 

2+ 1k

 =

 1 0

1

 + 1

 i+

 1 0

1

2+ 1

 j+

 1 0

2+ 1

 k

= [ ln | + 1| ]10 i+

tan−11 0j+1

2ln(2+ 1)1 0 k

= (ln 2 − ln 1) i + (4 − 0) j +12(ln 2 − ln 1) k = ln 2 i +4j+12ln 2 k 38.4

0 (sec  tan  i +  cos 2 j + sin22 cos 2 k) 

=4

0 sec  tan  

i+4

0  cos 2 

j+4

0 sin22 cos 2  k

= sec 4

0 i+1

2 sin 24

0 −4

0 1

2sin 2  j+1

6sin324

0 k

[For the -component, integrate by parts with  = ,  = cos 2 .]

= (sec4 − sec 0) i +

8 sin2 − 0 −

14cos 24 0

 j+16

sin3 2 − sin30 k

= (√

2 − 1) i +

8 +14cos214cos 0

j+16(1 − 0) k = (√

2 − 1) i + 814

j+16k

39.

(sec2 i + (2+ 1)3j+ 2ln  k)  =

sec2  i+

(2+ 1)3 j+

2ln   k

= tan  i +18(2+ 1)4j+1

33ln  −193 k+ C,

where C is a vector constant of integration. [For the -component, integrate by parts with  = ln ,  = 2.]

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

334 ¤ CHAPTER 13 VECTOR FUNCTIONS

52. From Exercise 51, r0() = −a  sin  + b  cos  ⇒ r00() = −a 2cos  − b 2sin . Then r00() + 2r() =

−a 2cos  − b 2sin 

+ 2(a cos  + b sin )

= −a 2cos  − b 2sin  + a 2cos  + b 2sin  = 0

53.

[r() × r0()] = r0() × r0() + r() × r00()by Formula 5 of Theorem 3. But r0() × r0() = 0 (by Example 12.4.2).

Thus, 

[r() × r0()] = r() × r00().

54.

(u() · [v () × w()])= u0() · [v() × w()] + u() · 

[v() × w ()]

= u0() · [v() × w()] + u() · [v0() × w() + v() × w0()]

= u0() · [v() × w()] + u() · [v0() × w()] + u() · [v() × w0()]

= u0() · [v() × w()] − v0() · [u() × w()] + w0() · [u() × v()]

55.

|r()| = 

[r() · r()]12=12[r() · r()]−12[2r() · r0()] = 1

|r()|r() · r0()

56. Since r() · r0() = 0, we have 0 = 2r() · r0() = 

[r() · r()] = 

|r()|2. Thus |r()|2, and so |r()|, is a constant, and hence the curve lies on a sphere with center the origin.

57. Since u() = r() · [r0() × r00()],

u0() = r0() · [r0() × r00()] + r() · 

[r0() × r00()]

= 0 + r() · [r00() × r00() + r0() × r000()] [since r0() ⊥ r0() × r00()]

= r() · [r0() × r000()] [since r00() × r00() = 0]

58. The tangent vector r0()is defined as lim

→0

r( + ) − r()

 . Here we assume that this limit exists and r0() 6= 0; then we know that this vector lies on the tangent line to the curve. As in Figure 1, let points  and  have position vectors r() and r( + ).

The vector r( + ) − r() points from  to , so r( + ) − r() =−−→ . If   0 then    + , so  lies “ahead”

of  on the curve. If  is sufficiently small (we can take  to be as small as we like since  → 0) then−−→

 approximates the curve from  to  and hence points approximately in the direction of the curve as  increases. Since  is positive,

1

−−→  = r( + ) − r()

 points in the same direction. If   0, then    +  so  lies “behind”  on the curve. For  sufficiently small, −−→ approximates the curve but points in the direction of decreasing . However,  is negative, so

1

−−→  = r( + ) − r()

 points in the opposite direction, that is, in the direction of increasing . In both cases, the difference quotientr( + ) − r()

 points in the direction of increasing . The tangent vector r0()is the limit of this difference quotient, so it must also point in the direction of increasing .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

334 ¤ CHAPTER 13 VECTOR FUNCTIONS

52. From Exercise 51, r0() = −a  sin  + b  cos  ⇒ r00() = −a 2cos  − b 2sin . Then r00() + 2r() =

−a 2cos  − b 2sin 

+ 2(a cos  + b sin )

= −a 2cos  − b 2sin  + a 2cos  + b 2sin  = 0

53.

[r() × r0()] = r0() × r0() + r() × r00()by Formula 5 of Theorem 3. But r0() × r0() = 0 (by Example 12.4.2).

Thus, 

[r() × r0()] = r() × r00().

54.

(u() · [v () × w()])= u0() · [v() × w()] + u() · 

[v() × w ()]

= u0() · [v() × w()] + u() · [v0() × w() + v() × w0()]

= u0() · [v() × w()] + u() · [v0() × w()] + u() · [v() × w0()]

= u0() · [v() × w()] − v0() · [u() × w()] + w0() · [u() × v()]

55.

|r()| = 

[r() · r()]12=12[r() · r()]−12[2r() · r0()] = 1

|r()|r() · r0()

56. Since r() · r0() = 0, we have 0 = 2r() · r0() = 

[r() · r()] = 

|r()|2. Thus |r()|2, and so |r()|, is a constant, and hence the curve lies on a sphere with center the origin.

57. Since u() = r() · [r0() × r00()],

u0() = r0() · [r0() × r00()] + r() · 

[r0() × r00()]

= 0 + r() · [r00() × r00() + r0() × r000()] [since r0() ⊥ r0() × r00()]

= r() · [r0() × r000()] [since r00() × r00() = 0]

58. The tangent vector r0()is defined as lim

→0

r( + ) − r()

 . Here we assume that this limit exists and r0() 6= 0; then we know that this vector lies on the tangent line to the curve. As in Figure 1, let points  and  have position vectors r() and r( + ).

The vector r( + ) − r() points from  to , so r( + ) − r() =−−→ . If   0 then    + , so  lies “ahead”

of  on the curve. If  is sufficiently small (we can take  to be as small as we like since  → 0) then−−→ approximates the curve from  to  and hence points approximately in the direction of the curve as  increases. Since  is positive,

1

−−→  = r( + ) − r()

 points in the same direction. If   0, then    +  so  lies “behind”  on the curve. For  sufficiently small, −−→ approximates the curve but points in the direction of decreasing . However,  is negative, so

1

−−→  = r( + ) − r()

 points in the opposite direction, that is, in the direction of increasing . In both cases, the difference quotientr( + ) − r()

 points in the direction of increasing . The tangent vector r0()is the limit of this difference quotient, so it must also point in the direction of increasing .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

參考文獻

相關文件

The Vertical Line Test A curve in the xy-plane is the graph of a function of x if and only if no vertical line intersects the curve more than once.. The reason for the truth of

3m long is revolved about one of its leg to generate a right circular cone.. Find the radius, height, and volume of the cone of the greatest volume that can be made

We can use the point (2 2) to determine the scale of the axes, and we estimate the length of the projection to be approximately 3.0 units.. All

parallel to this line, pointing in the direction of increasing function values, and with length equal to the maximum value of the directional derivative of  at (4 6).. We can

The tangent line to the curve is parallel to the plane when the curve’s tangent vector is orthogonal to the plane’s normal vector.. All

To see that this is true without using calculus, note that G = 0 is the equation of a sphere centered at the origin and F = 0 is the equation of a right circular cone with vertex at

After zooming in, the surface and the tangent plane become almost indistinguishable, as shown in the second graph.. (Here, the tangent plane is above the surface.) If we zoom

After zooming in, the surface and the tangent plane become almost indistinguishable, as shown in the second graph.. (Here, the tangent plane is above the surface.) If we zoom