• 沒有找到結果。

Section 14.6 Directional Derivatives and the Gradient Vector

N/A
N/A
Protected

Academic year: 2022

Share "Section 14.6 Directional Derivatives and the Gradient Vector"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Section 14.6 Directional Derivatives and the Gradient Vector

446 ¤ CHAPTER 14 PARTIAL DERIVATIVES

7.  ( ) =  = −1 (a) ∇( ) = 

i+

j= −1i+ (−−2) j = 1

i− 

2j (b) ∇(2 1) =1

1i− 2

12 j= i − 2 j

(c) By Equation 9, u (2 1) = ∇(2 1) · u = (i − 2 j) ·3 5i+45j

=3585 = −1.

8.  ( ) = 2ln  (a) ∇( ) = 

i+

j= 2 ln  i + (2) j (b) ∇(3 1) = 0 i + (91) j = 9 j

(c) By Equation 9, u (3 1) = ∇(3 1) · u = 9 j ·

135 i+1213j

= 0 +10813 =10813. 9.  (  ) = 2 − 3

(a) ∇(  ) = h(  ) (  ) (  )i =

2 − 3 2 − 3 2 − 32 (b) ∇(2 −1 1) = h−4 + 1 4 − 2 −4 + 6i = h−3 2 2i

(c) By Equation 14, u (2 −1 1) = ∇(2 −1 1) · u = h−3 2 2i · 045 −35

= 0 +8565 = 25.

10.  (  ) = 2

(a) ∇(  ) = h(  ) (  ) (  )i =

2() 2· () + · 2 2()

=

3 (2 + 2) 3 (b) ∇(0 1 −1) = h−1 2 0i

(c) u (0 1 −1) = ∇(0 1 −1) · u = h−1 2 0i ·3

131341213

= −133 +138 + 0 = 135

11.  ( ) = sin  ⇒ ∇( ) = hsin  cos i, ∇(0 3) = 3 212

, and a unit vector in the direction of v is u =√ 1

(−6)2+82h−6 8i = 101 h−6 8i =

3545, so

u (0 3) = ∇(0 3) · u = 3 212

·

3545

= −3103+104 =4−3103.

12.  ( ) = 

2+ 2 ⇒ ∇( ) =

(2+ 2)(1) − (2)

(2+ 2)2  0 − (2) (2+ 2)2

=

 2− 2

(2+ 2)2 − 2

(2+ 2)2

 ,

∇(1 2) =3

25 −254

, and a unit vector in the direction of v = h3 5i is u = 9+251 h3 5i =

3 345

34

, so

u (1 2) = ∇(1 2) · u =3

25 −254

·

3 345

34

=259

34252034 = −251134. 13. ( ) = √

 ⇒ ∇( ) =√

 i+

(2√

 )

j, ∇(2 4) = 2 i +12j, and a unit vector in the direction of v is u= √ 1

22+(−1)2(2 i − j) = 15(2 i − j), so u(2 4) = ∇(2 4) · u = (2 i +12j) · 15(2 i − j) =15 4 −12

= 27 5 or

7 5 10 .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

446 ¤ CHAPTER 14 PARTIAL DERIVATIVES

7.  ( ) =  = −1 (a) ∇( ) =

i+

j= −1i+ (−−2) j = 1

i− 

2j (b) ∇(2 1) = 1

1i− 2

12j= i − 2 j

(c) By Equation 9, u (2 1) = ∇(2 1) · u = (i − 2 j) ·3 5i+45j

= 3585 = −1.

8.  ( ) = 2ln  (a) ∇( ) =

i+

j= 2 ln  i + (2) j (b) ∇(3 1) = 0 i + (91) j = 9 j

(c) By Equation 9, u (3 1) = ∇(3 1) · u = 9 j ·

135 i+1213j

= 0 +10813 = 10813. 9.  (  ) = 2 − 3

(a) ∇(  ) = h(  ) (  ) (  )i =

2 − 3 2 − 3 2 − 32 (b) ∇(2 −1 1) = h−4 + 1 4 − 2 −4 + 6i = h−3 2 2i

(c) By Equation 14, u (2 −1 1) = ∇(2 −1 1) · u = h−3 2 2i · 045 −35

= 0 + 8565 =25.

10.  (  ) = 2

(a) ∇(  ) = h(  ) (  ) (  )i =

2() 2· () + · 2 2()

=

3 (2 + 2) 3 (b) ∇(0 1 −1) = h−1 2 0i

(c) u (0 1 −1) = ∇(0 1 −1) · u = h−1 2 0i ·3

131341213

= −133 +138 + 0 = 135

11.  ( ) = sin  ⇒ ∇( ) = hsin  cos i, ∇(0 3) = 3 212

, and a unit vector in the direction of v is u = √ 1

(−6)2+82h−6 8i =101 h−6 8i =

3545 , so

u (0 3) = ∇(0 3) · u = 3 212

·

3545

= −3103 +104 =4−3103.

12.  ( ) = 

2+ 2 ⇒ ∇( ) =

(2+ 2)(1) − (2)

(2+ 2)2  0 − (2) (2+ 2)2

=

 2− 2

(2+ 2)2 − 2

(2+ 2)2

 ,

∇(1 2) =3 25 −254

, and a unit vector in the direction of v = h3 5i is u = 9+251 h3 5i =

3 345

34

, so

u (1 2) = ∇(1 2) · u =3 25 −254

·

3 345

34

= 25934252034= −251134.

13. ( ) = √

 ⇒ ∇( ) =√

 i+

(2√

 )

j, ∇(2 4) = 2 i +12j, and a unit vector in the direction of v is u=√ 1

22+(−1)2(2 i − j) =15(2 i − j), so u(2 4) = ∇(2 4) · u = (2 i +12j) ·15(2 i − j) = 15 4 −12

=275 or

7 5 10 .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ¤ 447 14. ( ) = 2− ⇒ ∇( ) =

2− i+

−2−

j, ∇(3 0) = 6 i − 9 j, and a unit vector in the direction of v is u =√ 1

32+42(3 i + 4 j) = 15(3 i + 4 j), so u(3 0) = ∇(3 0) · u = (6 i − 9 j) ·15(3 i + 4 j) = 15(18 − 36) = −185. 15.  (  ) = 2 + 2 ⇒ ∇(  ) =

2 2+ 2 2

, ∇(1 2 3) = h4 13 4i, and a unit vector in the direction of v is u = 1

4+1+4h2 −1 2i = 13h2 −1 2i, so

u (1 2 3) = ∇(1 2 3) · u = h4 13 4i ·13h2 −1 2i = 13(8 − 13 + 8) = 33 = 1.

16.  (  ) = 2tan−1 ⇒ ∇(  ) =

2tan−1 2 tan−1 2 1 + 2

 ,

∇(2 1 1) =

1 ·4 4 ·41+12

=

4  1, and a unit vector in the direction of v is u = 1

1+1+1h1 1 1i = 13h1 1 1i, so u (2 1 1) = ∇(2 1 1) · u =

4  1

·13h1 1 1i = 13

4 +  + 1

= 1 3

5

4 + 1.

17. (  ) = ln(3 + 6 + 9) ⇒ ∇(  ) = h3(3 + 6 + 9) 6(3 + 6 + 9) 9(3 + 6 + 9)i,

∇(1 1 1) =1

61312, and a unit vector in the direction of v = 4 i + 12 j + 6 k is u = 16+144+361 (4 i + 12 j + 6 k) = 27i+67j+37k, so

u(1 1 1) = ∇(1 1 1) · u =1

61312

·2

76737

=211 +27 +143 =2342. 18.u (2 2) = ∇(2 2) · u, the scalar projection of ∇(2 2) onto u, so we draw a

perpendicular from the tip of ∇(2 2) to the line containing u. We can use the point (2 2) to determine the scale of the axes, and we estimate the length of the projection to be approximately 3.0 units. Since the angle between ∇(2 2) and u is greater than 90, the scalar projection is negative. Thus u (2 2) ≈ −3.

19.  ( ) =

 ⇒ ∇( ) =

1

2()−12()12()−12()

=

 

2

  2



, so ∇(2 8) = 114.

The unit vector in the direction of−−→

  = h5 − 2 4 − 8i = h3 −4i is u =3 5 −45

, so

u (2 8) = ∇(2 8) · u = 114

·3

5 −45

=25.

20.  (  ) = 23 ⇒ ∇(  ) =

23 23 322

, so ∇(2 1 1) = h1 4 6i. The unit vector in the direction of−−→

  = h−2 −4 4i is u = 4+16+161 h−2 −4 4i =16h−2 −4 4i, so

u (2 1 1) = ∇(2 1 1) · u = h1 4 6i ·16h−2 −4 4i = 16(−2 − 16 + 24) = 1.

21.  ( ) = 4√ ⇒ ∇( ) =

4 ·12−12 4√

= h2√ 4√

 i.

∇(4 1) = h1 8i is the direction of maximum rate of change, and the maximum rate is |∇(4 1)| =√

1 + 64 =√65.

22.  ( ) =  ⇒ ∇( ) =

() () + (1)

=

2 ( + 1).

∇(0 2) = h4 1i is the direction of maximum rate of change, and the maximum rate is |∇(0 2)| =√

16 + 1 =√ 17.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ¤ 447 14. ( ) = 2− ⇒ ∇( ) =

2− i+

−2−

j, ∇(3 0) = 6 i − 9 j, and a unit vector in the direction of v is u =√ 1

32+42(3 i + 4 j) = 15(3 i + 4 j), so u(3 0) = ∇(3 0) · u = (6 i − 9 j) ·15(3 i + 4 j) = 15(18 − 36) = −185. 15.  (  ) = 2 + 2 ⇒ ∇(  ) =

2 2+ 2 2

, ∇(1 2 3) = h4 13 4i, and a unit vector in the direction of v is u = 4+1+41 h2 −1 2i = 13h2 −1 2i, so

u (1 2 3) = ∇(1 2 3) · u = h4 13 4i ·13h2 −1 2i = 13(8 − 13 + 8) = 33 = 1.

16.  (  ) = 2tan−1 ⇒ ∇(  ) =

2tan−1 2 tan−1 2 1 + 2

 ,

∇(2 1 1) =

1 ·4 4 ·41+12

=

4  1

, and a unit vector in the direction of v is u =1+1+11 h1 1 1i = 13h1 1 1i, so u (2 1 1) = ∇(2 1 1) · u =

4  1

·13h1 1 1i = 13

4 +  + 1

= 135

4 + 1.

17. (  ) = ln(3 + 6 + 9) ⇒ ∇(  ) = h3(3 + 6 + 9) 6(3 + 6 + 9) 9(3 + 6 + 9)i,

∇(1 1 1) =1

61312, and a unit vector in the direction of v = 4 i + 12 j + 6 k is u = 1

16+144+36 (4 i + 12 j + 6 k) = 27i+67j+37k, so

u(1 1 1) = ∇(1 1 1) · u =1

61312

·2

76737

=211 +27 +143 =2342. 18.u (2 2) = ∇(2 2) · u, the scalar projection of ∇(2 2) onto u, so we draw a

perpendicular from the tip of ∇(2 2) to the line containing u. We can use the point (2 2) to determine the scale of the axes, and we estimate the length of the projection to be approximately 3.0 units. Since the angle between ∇(2 2) and u is greater than 90, the scalar projection is negative. Thus u (2 2) ≈ −3.

19.  ( ) =

 ⇒ ∇( ) =

1

2()−12()12()−12()

=

 

2

  2



, so ∇(2 8) = 114.

The unit vector in the direction of−−→

  = h5 − 2 4 − 8i = h3 −4i is u =3 5 −45

, so

u (2 8) = ∇(2 8) · u = 114

·3 5 −45

=25.

20.  (  ) = 23 ⇒ ∇(  ) =

23 23 322

, so ∇(2 1 1) = h1 4 6i. The unit vector in the direction of−−→

  = h−2 −4 4i is u = 4+16+161 h−2 −4 4i =16h−2 −4 4i, so

u (2 1 1) = ∇(2 1 1) · u = h1 4 6i ·16h−2 −4 4i = 16(−2 − 16 + 24) = 1.

21.  ( ) = 4√

 ⇒ ∇( ) =

4 ·12−12 4√



= h2√

 4√

 i.

∇(4 1) = h1 8i is the direction of maximum rate of change, and the maximum rate is |∇(4 1)| =√

1 + 64 =√ 65.

22.  ( ) =  ⇒ ∇( ) =

() () + (1)

=

2 ( + 1).

∇(0 2) = h4 1i is the direction of maximum rate of change, and the maximum rate is |∇(0 2)| =√

16 + 1 =√ 17.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

448 ¤ CHAPTER 14 PARTIAL DERIVATIVES

23.  ( ) = sin() ⇒ ∇( ) = h cos()  cos()i, ∇(1 0) = h0 1i. Thus the maximum rate of change is

|∇(1 0)| = 1 in the direction h0 1i.

24.  (  ) =  ln() ⇒ ∇(  ) =

ln()  · 

  · 



=

ln()



, ∇(1 212) =

012 2. Thus

the maximum rate of change is

∇(1 212) =

0 +14+ 4 =

17

4 =217 in the direction

012 2or equivalently h0 1 4i.

25.  (  ) = ( + ) = ( + )−1

∇(  ) =

1( + ) −( + )−2(1) −( + )−2(1)

=

 1

 +  − 

( + )2 −  ( + )2

 ,

∇(8 1 3) =1

4 −482 −482

=1

4 −12 −12

. Thus the maximum rate of change is

|∇(8 1 3)| =

1

16+14+14 =

9

16= 34in the direction1

4 −12 −12

or equivalently h1 −2 −2i.

26.  (  ) = arctan() ⇒ ∇(  ) =

 

1 + ()2 

1 + ()2 

1 + ()2

, ∇(1 2 1) =2

51525. Thus the maximum rate of change is |∇(1 2 1)| =

4

25+251 +254 =

9

25 =35 in the direction2

51525

or equivalently h2 1 2i.

27. (a) As in the proof of Theorem 15, u = |∇| cos . Since the minimum value of cos  is −1 occurring when  = , the minimum value of uis − |∇| occurring when  = , that is when u is in the opposite direction of ∇

(assuming ∇ 6= 0).

(b) ( ) = 4 − 23 ⇒ ∇( ) =

43 − 23 4− 322

, so  decreases fastest at the point (2 −3) in the direction −∇(2 −3) = − h12 −92i = h−12 92i.

28.  ( ) = 2+ 3 ⇒ ∇( ) =

2 + 3 32

so ∇(2 1) = h5 6i. If u = h i is a unit vector in the desired direction then u (2 1) = 2 ⇔ h5 6i · h i = 2 ⇔ 5 + 6 = 2 ⇔  = 1356. But 2+ 2= 1 ⇔

2+1 3562

= 1 ⇔ 6136259 +19 = 1 ⇔ 612− 20 − 32 = 0. By the quadratic formula, the solutions are

 = −(−20) ±

(−20)2− 4(61)(−32)

2(61) = 20 ±√

8208

122 = 10 ± 6√ 57

61 . If  =10 + 6√ 57

61 ≈ 09065 then

 =1 3−5

6

10 + 6√ 57 61

≈ −04221, and if  = 10 − 6√ 57

61 ≈ −05787 then  = 1 3−5

6

10 − 6√ 57 61

≈ 08156.

Thus the two directions giving a directional derivative of 2 are approximately h09065 −04221i and h−05787 08156i.

29. The direction of fastest change is ∇( ) = (2 − 2) i + (2 − 4) j, so we need to find all points ( ) where ∇( ) is parallel to i + j ⇔ (2 − 2) i + (2 − 4) j =  (i + j) ⇔  = 2 − 2 and  = 2 − 4. Then 2 − 2 = 2 − 4 ⇒

 =  + 1so the direction of fastest change is i + j at all points on the line  =  + 1.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

448 ¤ CHAPTER 14 PARTIAL DERIVATIVES

23.  ( ) = sin() ⇒ ∇( ) = h cos()  cos()i, ∇(1 0) = h0 1i. Thus the maximum rate of change is

|∇(1 0)| = 1 in the direction h0 1i.

24.  (  ) =  ln() ⇒ ∇(  ) =

ln()  · 

  · 



=

ln()



, ∇(1 212) =

012 2. Thus

the maximum rate of change is

∇(1 212) =

0 +14+ 4 =

17

4 =217 in the direction 012 2

or equivalently h0 1 4i.

25.  (  ) = ( + ) = ( + )−1

∇(  ) =

1( + ) −( + )−2(1) −( + )−2(1)

=

 1

 +  − 

( + )2 −  ( + )2

 ,

∇(8 1 3) =1

4 −482 −482

=1

4 −12 −12

. Thus the maximum rate of change is

|∇(8 1 3)| =

1

16+14+14 =

9

16= 34in the direction1

4 −12 −12

or equivalently h1 −2 −2i.

26.  (  ) = arctan() ⇒ ∇(  ) =

 

1 + ()2 

1 + ()2 

1 + ()2

, ∇(1 2 1) =2

51525 . Thus

the maximum rate of change is |∇(1 2 1)| =

4

25+251 +254 =

9

25 =35 in the direction2

51525or equivalently h2 1 2i.

27. (a) As in the proof of Theorem 15, u = |∇| cos . Since the minimum value of cos  is −1 occurring when  = , the minimum value of uis − |∇| occurring when  = , that is when u is in the opposite direction of ∇

(assuming ∇ 6= 0).

(b) ( ) = 4 − 23 ⇒ ∇( ) =

43 − 23 4− 322

, so  decreases fastest at the point (2 −3) in the direction −∇(2 −3) = − h12 −92i = h−12 92i.

28.  ( ) = 2+ 3 ⇒ ∇( ) =

2 + 3 32

so ∇(2 1) = h5 6i. If u = h i is a unit vector in the desired direction then u (2 1) = 2 ⇔ h5 6i · h i = 2 ⇔ 5 + 6 = 2 ⇔  = 1356. But 2+ 2= 1 ⇔

2+1

3562

= 1 ⇔ 6136259 +19 = 1 ⇔ 612− 20 − 32 = 0. By the quadratic formula, the solutions are

 = −(−20) ±

(−20)2− 4(61)(−32)

2(61) = 20 ±√

8208

122 = 10 ± 6√ 57

61 . If  =10 + 6√ 57

61 ≈ 09065 then

 =1 3−5

6

10 + 6√ 57 61

≈ −04221, and if  = 10 − 6√ 57

61 ≈ −05787 then  = 1 3−5

6

10 − 6√ 57 61

≈ 08156.

Thus the two directions giving a directional derivative of 2 are approximately h09065 −04221i and h−05787 08156i.

29. The direction of fastest change is ∇( ) = (2 − 2) i + (2 − 4) j, so we need to find all points ( ) where ∇( ) is parallel to i + j ⇔ (2 − 2) i + (2 − 4) j =  (i + j) ⇔  = 2 − 2 and  = 2 − 4. Then 2 − 2 = 2 − 4 ⇒

 =  + 1so the direction of fastest change is i + j at all points on the line  =  + 1.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ¤ 449 30. The fisherman is traveling in the direction h−80 −60i. A unit vector in this direction is u =1001 h−80 −60i =

45 −35

,

and if the depth of the lake is given by ( ) = 200 + 0022− 00013, then ∇( ) =

004 −00032 .

u (80 60) = ∇(80 60) · u = h32 −108i ·

45 −35

= 392. Since u (80 60)is positive, the depth of the lake is

increasing near (80 60) in the direction toward the buoy.

31.  = 

2+ 2+ 2 and 120 =  (1 2 2) = 

3so  = 360.

(a) u = h1 −1 1i√

3 ,

u (1 2 2) = ∇ (1 2 2) · u =

−360

2+ 2+ 2−32

h  i

(122)· u = −403h1 2 2i ·13h1 −1 1i = −3403 (b) From (a), ∇ = −360

2+ 2+ 2−32

h  i, and since h  i is the position vector of the point (  ), the vector − h  i, and thus ∇ , always points toward the origin.

32. ∇ = −400−2−32−92h 3 9i (a) u = 1

6h1 −2 1i, ∇ (2 −1 2) = −400−43h2 −3 18i and

u (2 −1 2) =

−400−43

√6

(26) = −5200√ 6 343

Cm.

(b) ∇ (2 −1 2) = 400−43h−2 3 −18i or equivalently h−2 3 −18i.

(c) |∇ | = 400−2− 32− 92

2+ 92+ 812 ◦Cm is the maximum rate of increase. At (2 −1 2) the maximum rate of increase is 400−43

337 Cm.

33. ∇ (  ) = h10 − 3 +   − 3 i, ∇ (3 4 5) = h38 6 12i (a) u (3 4 5) = h38 6 12i ·13h1 1 −1i = 323

(b) ∇ (3 4 5) = h38 6 12i, or equivalently, h19 3 6i.

(c) |∇ (3 4 5)| =√

382+ 62+ 122=√

1624 = 2√ 406

34.  =  ( ) = 1000 − 00052− 0012 ⇒ ∇( ) = h−001 −002i and ∇(60 40) = h−06 −08i.

(a) Due south is in the direction of the unit vector u = −j and

u (60 40) = ∇ (60 40) · h0 −1i = h−06 −08i · h0 −1i = 08. Thus, if you walk due south from (60 40 966) you will ascend at a rate of 08 vertical meters per horizontal meter.

(b) Northwest is in the direction of the unit vector u =1

2h−1 1i and

u (60 40) = ∇ (60 40) ·12h−1 1i = h−06 −08i ·12h−1 1i = −022 ≈ −014. Thus, if you walk northwest from (60 40 966) you will descend at a rate of approximately 014 vertical meters per horizontal meter.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

(2)

SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ¤ 451

38. If we place the initial point of the gradient vector ∇(4 6) at (4 6), the vector is perpendicular to the level curve of  that includes (4 6), so we sketch a portion of the level curve through (4 6) (using the nearby level curves as a guideline) and draw a line perpendicular to the curve at (4 6). The gradient vector is

parallel to this line, pointing in the direction of increasing function values, and with length equal to the maximum value of the directional derivative of  at (4 6). We can estimate this length by finding the average rate of change in the direction of the gradient. The line intersects the contour lines corresponding to

−2 and −3 with an estimated distance of 05 units. Thus the rate of change is approximately −2 − (−3)

05 = 2, and we sketch the gradient vector with length 2.

39.  ( ) = 3+ 52 + 3

u ( ) = ∇( ) · u =

32+ 10 52+ 32

·3

545

= 952+ 6 + 42+1252= 2952+ 6 +1252. Then

2u ( ) = u[u ( )] = ∇ [u ( )] · u =58

5 + 6 6 +245

·3 545

= 17425 +185 +245 +9625 = 29425 +18625 and 2u (2 1) = 29425(2) +18625(1) = 77425.

40. (a) From Equation 9 we have u = ∇ · u = h i · h i =  + and from Exercise 39 we have

u2 = u[u ] = ∇ [u ] · u = h +   + i · h i = 2+  +  + 2. But = by Clairaut’s Theorem, so u2 = 2+ 2 + 2.

(b) ( ) = 2 ⇒  = 2, = 22,  = 0, = 22, = 42and a unit vector in the direction of v is u = √ 1

42+62h4 6i =

2 133

13

= h i. Then

u2 = 2+ 2 + 2= 0 ·

2 13

2

+ 2 · 22

2 13

  3

13

+ 42

3 13

2

=24132+36132.

41. Let  (  ) = 2( − 2)2+ ( − 1)2+ ( − 3)2. Then 2( − 2)2+ ( − 1)2+ ( − 3)2= 10is a level surface of  .

(  ) = 4( − 2) ⇒ (3 3 5) = 4, (  ) = 2( − 1) ⇒ (3 3 5) = 4, and

(  ) = 2( − 3) ⇒ (3 3 5) = 4.

(a) Equation 19 gives an equation of the tangent plane at (3 3 5) as 4( − 3) + 4( − 3) + 4( − 5) = 0 ⇔ 4 + 4 + 4 = 44or equivalently  +  +  = 11.

(b) By Equation 20, the normal line has symmetric equations − 3

4 =  − 3

4 =  − 5

4 or equivalently

 − 3 =  − 3 =  − 5. Corresponding parametric equations are  = 3 + ,  = 3 + ,  = 5 + .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ¤ 453

47.  (  ) =  +  + ,

∇ (  ) = h +   +   + i,

∇ (1 1 1) = h2 2 2i, so an equation of the tangent plane is 2 + 2 + 2 = 6 or  +  +  = 3, and the normal line is given by  − 1 =  − 1 =  − 1 or

 =  = . To graph the surface we solve for :

 =3 − 

 +  .

48. (  ) = , ∇ (  ) = h  i,

∇ (1 2 3) = h6 3 2i, so an equation of the tangent plane is 6 + 3 + 2 = 18, and the normal line is given by − 1

6 = − 2

3 = − 3

2 or  = 1 + 6,  = 2 + 3,

 = 3 + 2. To graph the surface we solve for :  = 6

.

49.  ( ) =  ⇒ ∇( ) = h i, ∇(3 2) = h2 3i. ∇(3 2) is perpendicular to the tangent line, so the tangent line has equation

∇(3 2) · h − 3  − 2i = 0 ⇒ h2 3i · h − 3  − 2i = 0 ⇒ 2( − 3) + 3( − 2) = 0 or 2 + 3 = 12.

50. ( ) = 2+ 2− 4 ⇒ ∇( ) = h2 − 4 2i,

∇(1 2) = h−2 4i. ∇(1 2) is perpendicular to the tangent line, so the tangent line has equation ∇(1 2) · h − 1  − 2i = 0 ⇒ h−2 4i · h − 1  − 2i = 0 ⇒ −2( − 1) + 4( − 2) = 0 ⇔

−2 + 4 = 6 or equivalently − + 2 = 3.

51. ∇ (0 0 0) =

20

2 20

2 20

2

. Thus an equation of the tangent plane at (0 0 0)is

20

2  +20

2  +20

2  = 2

20

2 +02

2 +20

2

= 2(1) = 2since (0 0 0)is a point on the ellipsoid. Hence

0

2  +0

2  +0

2  = 1is an equation of the tangent plane.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

參考文獻

相關文件

The tangent line to the curve is parallel to the plane when the curve’s tangent vector is orthogonal to the plane’s normal vector.. All

To see that this is true without using calculus, note that G = 0 is the equation of a sphere centered at the origin and F = 0 is the equation of a right circular cone with vertex at

The tangent line to the curve is parallel to the plane when the curve’s tangent vector is orthogonal to the plane’s normal vector.. All

[r]

To find the osculating plane, we first calculate the unit tangent and normal vectors.. In Maple, we use the VectorCalculus package and set

The tangential component of a is the length of the projection of a onto T, so we sketch the scalar projection of a in the tangential direction to the curve and estimate its length to

[r]

With the help of the pictures and the words below, write a journal entry about what happened.. Write at least