• 沒有找到結果。

(1)(1) Using the concept of Riemann sum to evaluate (a) lim n→∞ 1 n n X k=1 sinkπ n = Z 1 0 sin πxdx

N/A
N/A
Protected

Academic year: 2022

Share "(1)(1) Using the concept of Riemann sum to evaluate (a) lim n→∞ 1 n n X k=1 sinkπ n = Z 1 0 sin πxdx"

Copied!
9
0
0

加載中.... (立即查看全文)

全文

(1)

(1) Using the concept of Riemann sum to evaluate (a) lim

n→∞

1 n

n

X

k=1

sinkπ n =

Z 1 0

sin πxdx.

(b) lim

n→∞

n

X

k=1

n n2+ k2 =

Z 1 0

1 1 + x2dx.

(c) lim

n→∞

1 n

n

X

k=1

r 1 + k

n = Z 1

0

√1 + xdx.

(d) lim

n→∞

e1/n+ e2/n+ · · · + en/n

n =

Z 1 0

exdx.

(e) lim

n→∞

n

X

k=1

ln n r

1 + k n =

Z 1 0

ln(1 + x)dx.

(f) lim

n→∞

√1 n

 1

√n + 1+ 1

√n +√

2+ · · · + 1

√n +√ n



= Z 1

0

dx 1 +√

x.

For a suitable choice of function f ∈ [0, 1], sums in the above limits can be written as Pn

n=1 1

nf kn which is a Riemann sum of f with respect to partition Pn= {k/n : 0 ≤ k ≤ n}.

The limit is thus given by the integralR1

0 f (x)dx.

(2) Evaluate (a)

Z

xnln xdx.

Solution: This can be solved by integration by parts.

Z

xnln xdx = Z

ln xd xn+1 n + 1



= xn+1ln x n + 1 −

Z xn+1 n + 1d ln x

=xn+1ln x n + 1 − 1

n + 1 Z

xn+1·dx

x = xn+1ln x n + 1 − 1

n + 1 Z

xndx

=xn+1ln x

n + 1 − xn+1 (n + 1)2 + C.

(b)

Z dx

sin2x + 4 cos2x.

Solution:

1

(2)

Let t = tan x. Then cos x = 1

1 + t2 and sin x = t

1+t2 and dx = 1+tdt2. The integral becomes

Z dx

sin2x + 4 cos2x =

Z 1

t

1+t2 +1+t42

· dt 1 + t2

= Z dt

t + 4

= ln |t + 4| + C

= ln | tan x + 4| + C.

(c) Z

tan−11 xdx.

Solution: We use integration by parts:

Z

tan−1 1

xdx = x tan−1 1 x−

Z

x · d tan−1 1

x = x tan−1 1 x−

Z

x · 1

1 + (1/x)2 · −dx x2

= x tan−1 1 x+

Z xdx 1 + x2

= x tan−1 1 x+1

2ln(1 + x2) + C.

(d) Z √

x − 1 x + 3 dx.

Solution:

Let u =√

x − 1. Then x = 1 + u2 and dx = 2udu. Thus Z √

x − 1 x + 3 dx =

Z u

4 + u2 · 2udu = 2 Z u2

u2+ 4du

= 2 Z 

1 − 4 u2+ 4

 du

= 2u − 4

Z 1

(u/2)2+ 1 du

2

= 2u − 4 tan−1u 2 + C

= 2√

x − 1 − 4 tan−1

√x − 1 2 + C.

(e)

Z x

(x + 1)(x + 2)(x + 3)dx.

Solution:

Use Partial fraction expansion.

(f)

Z 8x2+ 4x − 11 (x + 3)(x − 1)2dx.

(3)

Solution:

Use partial fraction expansion.

(g) Z

x2tan−1xdx.

Solution:

We use integration by parts:

Z

x2tan−1xdx = 1 3

Z

tan−1xdx3

= x3

3 tan−1x − 1 3

Z

x3· 1 1 + x2dx

= x3

3 tan−1x − 1 3

Z x3 1 + x2dx.

The use partial fraction expansion to evaluate

Z x3 1 + x2dx.

(3) Evaluate (a)

Z π 0

√1 − sin xdx.

Write sin x = 2 sinx2cosx2. Then 1 − sin x =

cosx

2 − sinx 2

2

. Hence the integral becomes

Z π 0

| cosx

2 − sinx 2|dx.

(b) Z π/2

0

cos θ p2 − sin2θ

dθ.

Solution:

Let u = sin θ. The integral becomes Z 1

0

√ du

2 − u2 = Z 1

0

1 q

1 − (u/√ 2)2

√du 2.

Let u =√

2 sin t. Then the integral becomes Z π4

0

1dt = π 4. (c)

Z 1 0

x2+ 1 x4+ 1dx.

Solution:

Write

x4+ 1 = x4+ 2x2+ 1 − 2x2

= (x2+ 1) − (√ 2x)2

= (x2−√

2x + 1)(x2+√

2x + 1).

(4)

Then use partial fraction expansion.

(d) Z 1

0

4

x 1 +√

xdx.

Solution:

(e) Z π/2

0

| cos 2x − sin x|dx.

Solution:

Find x in [0, π/2] such that cos 2x > sin x and cos 2x < sin x.

(f) Z 10

2

x + 1 x√

x − 1dx.

Solution:

(g) Z 1

0

x3ex2 (x2+ 1)2dx.

Solution:

(h) Z 3

1

|x2− 4|dx.

Solution:

(i) Z 1

1/2

√ dt 2t − t2.

Solution:

(j) Z 1

0

ln(1 + x)

ln(1 + x) + ln(2 − x)dx.

Solution:

(k) Z π/2

0

sin4x cos5xdx.

Solution:

(l) Z π

0

cosnx sin2(n + 1)xdx.

Solution:

(m) Z π/2

0

sin x sin 2x sin 3xdx.

(5)

Solution:

(n) Z

0

dx

(2 + cos x)(3 + cos x).

Solution:

(4) Evaluate (a)

Z x · 3x2 3x2− 2dx.

Solution:

Let u = 3x2− 2. Then du = 3x2· ln 3 · 2xdx.

(b)

Z cos x

√4 − cos2xdx.

Solution:

Write 4 − cos2x = 3 + sin2x. The integral becomes Z cos x

p3 + sin2x dx.

Let u =√ 3 sin x.

(c)

Z x

√x2+ 2xdx.

Solution:

Write x2+ 2x = (x + 1)2− 1. Then the integral becomes

Z x

√x2+ 2xdx =

Z x

p(x + 1)2− 1dx =

Z x + 1

p(x + 1)2− 1dx −

Z 1

p(x + 1)2− 1dx.

For the first integral, we let u = (x + 1)2. Then du = 2(x + 1)dx. Thus

Z x + 1

p(x + 1)2− 1dx =

Z du

2√

u − 1 =√

u − 1 + C =p

x2+ 2x + C.

(d) Z

sech−1(x)dx.

Solution:

(e)

Z u

u6− 8du.

Solution:

(f) Z

sin6xdx.

Solution:

(6)

(g)

Z 1

1 + exdx.

Solution:

(h) Z

sin(ln x)dx.

Solution:

(5) Evaluate (a)

Z 4 1

sec−1√ xdx.

Solution:

(b) Z 2

0

√x

√x +√

2 − xdx.

Solution:

(c) Z π

−π

(x2p3

x3+ 1 + | cos x|)dx.

Solution:

(d) Z 1

0

tan−1x 1 + x dx.

Solution:

(e) Z 2

0

x5e−x3dx.

Solution:

Write

x5e−x3 =



−x3 3



−3x2e−x3 . Thus we may use integration by parts to solve the problem:

Z 2 0

x5e−x3dx = Z 2

0



−x3 3

 de−x3

= −x3

3 e−x3|20− Z 2

0

−x2e−x3dx

= −x3

3 e−x3|20−1 3ex3|20. (f)

Z 1/2 0

√ dx

x2+ 4x + 5.

(7)

Solution:

write x2+ 4x + 5 = (x + 2)2+ 1. Taking u = x + 2, the integral becomes Z 32

2

√ du u2+ 1.

(g) Z

π/2

0

d

du[sin u cos u2]du.

Solution:

By the fundamental theorem of calculus:

Z

π/2

0

d

du[sin u cos u2]du = sin u cos u2|

π/2 0 .

(h) Z π/2

0

sin x

cos2x + 3 cos x + 2dx.

Solution:

Let t = cos x. Then the integral becomes Z 1

0

dt t2+ 3t + 2. Then use partial fraction expansion.

(i) Z π/4

0

(tan2θ + 4 tan θ + 3) cos2θ. Solution:

Write the integral as Z π/4

0

(tan2θ + 4 tan θ + 3) cos2θ = Z π/4

0

sec2θdθ (tan2θ + 4 tan θ + 3). Let u = tan θ. Then the integral becomes

Z 1 0

du u2+ 4u + 3. Then use partial fraction expansion.

(j) Z 7π/3

π/3

sin3xdx.

Solution:

Write sin3x = sin x · sin2x = sin x(1 − cos2x). Let u = cos x.

(6) Evaluate I1=

Z sin x

cos x + sin xdx and I2=

Z cos x cos x + sin xdx.

Hint: evaluate both I1+ I2and I1− I2.

(8)

We know

I1+ I2= Z

1dx = x + C I1− I2=

Z sin x − cos x sin x + cos xdx.

Let u = sin x + cos x. We have du = (cos x − sin x)dx. Thus I1− I2= −

Z du

u = − ln |u| + C = − ln | sin x + cos x| + C.

This implies that I1=1 2x − 1

2ln | sin x + cos x| + C and I2=1 2x +1

2ln | sin x + cos x| + C

(7) Suppose a < b. Evaluate Z b

a

p(x − a)(b − x)dx.

Solution:

Let x = (b − a) sin2t + a. Then dx = 2(b − a) sin t cos tdt and x − a = (b − a) sin2t, b − x = (b − a) cos2t.

Thus Z

p(x − a)(b − x)dx = Z

(b − a) sin t cos t · 2(b − a) sin t cos tdt

= 1

2(b − a)2 Z

sin22tdt

= 1

2(b − a)2

Z 1 − cos 2t

2 dt

= 1

4(b − a)2

 t −1

2sin 2t

 + C

= 1

4(b − a)2 sin−1r x − a

b − a −p(x − a)(b − x) b − a

! + C.

(8) Suppose a > 0 ac − b2> 0. Show that Z π/2

−π/2

dx

a cos2x + 2b cos x sin x + c sin2x = π

√ac − b2. Solution:

Let I be the integral and t = tan x. Then dt

1 + t2 = dx and sin x = t

√1 + t2, cos x = 1

√1 + t2. Thus the integral becomes

Z

−∞

dt a + 2bt + ct2. Completing the square of the enumerator, we obtain

a + 2bt + ct2= c

 t +b

c

2

+ac − b2 c

(9)

Then Z

−∞

dt

a + 2bt + ct2 = Z

−∞

cdt

(ct + b)2+ ac − b2. Let u = ct + b. Then du = cdt. Thus

I = Z

−∞

du u2+ ac − b2. Let v = u

ac − b2. Then dv = du

√ac − b2

. Hence

I = 1

√ ac − b2

Z

−∞

dv v2+ 1. We know

Z

−∞

dv

v2+ 1 = π. Thus I = π

√ac − b2.

參考文獻

相關文件

(1) Determine whether the series converges or diverges.. Write c if it is convergent and d if it

[r]

Determine whether the series is absolutely convergent, conditionally convergent, or diver- gent... However, any conditionally convergent series can be rearranged to give a

The minimal ellipse that can enclosed the cirlce is tangent to the circle, and the tangent point (x, y) has one possible solution for y variable.. This is our constrain

I will give no credit for wildly incorrect answers which are obviously only there in the hopes of getting partial credit.. Page 2

But P na n = P(−1) n−1 is divergent because the limit of its partial sum does

[r]

[r]