• 沒有找到結果。

(8%) Evaluate the integral Z 1 −1 ln  x

N/A
N/A
Protected

Academic year: 2022

Share "(8%) Evaluate the integral Z 1 −1 ln  x"

Copied!
6
0
0

加載中.... (立即查看全文)

全文

(1)

微甲01-05班 統一教學期末考解答

1. (8%) Evaluate the integral Z 1

−1

e2x 1 + exdx.

Sol:

Let u = ex, then du = exdx, and so Z 1

−1

e2x

1 + exdx = Z e

e−1

u 1 + udu

= Z e

e−1

1 − 1 1 + udu

= [u − ln(1 + u)]ee−1

= e −1 e − 1.

2. (8%) Evaluate the integral Z 1

−1

ln

 x +√

1 + x2

 dx.

Sol:

Note that for −1 ≤ x ≤ 1,

ln(−x +p

1 + (−x)2) = ln 1 x +√

1 + x2 = − ln(x +√

1 + x2).

So ln(x +√

1 + x2) is an odd function in [−1, 1], and thus the integral equals 0.

3. (8%) Evaluate the integral

Z dt

t −√

1 − t2. Sol:

Set t = sin θ. Then the integral becomes to

Z cos θ

sin θ − cos θ dθ. Now Z cos θ

sin θ − cos θ dθ =

Z 1

tan θ − 1 dθ

Again we make a substitution. Let u = tan θ. du = sec2θdθ = (1 + u2)dθ. Hence

Z 1

tan θ − 1 dθ =

Z 1

(u − 1)(u2+ 1) du = Z 

1

2(u − 1) − u + 1 2(u2+ 1)

 du

Clearly,

Z 1

2(u − 1) du = 1

2ln |u − 1| + C1

(2)

Z u + 1

2(u2+ 1) du = 1

4ln |u2+ 1| + 1

2arctan u + C2 Hence one can get

Z 1

tan θ − 1 dθ = 1

2ln | tan θ − 1| − 1

4ln | tan2θ + 1| −1 2θ + C with C = C1− C2. Note

1

2ln | tan θ − 1| − 1

4ln | tan2θ + 1| = 1

2ln | tan θ − 1| − 1

2ln | sec θ| = 1

2ln | sin θ − cos θ|

Recall that sin θ = t, cos θ =√

1 − t2. Therefore

Z 1

t −√

1 − t2 dt = 1

2ln |t −√

1 − t2| − 1

2arcsin t + C

4. (8%) Evaluate the integral

Z dx

cos2x + a2sin2x and

Z dx

cos2x − a2sin2x, a > 0.

Sol:

Z dx

cos2(x) ± a2sin2(x) =

Z sec2(x)dx 1 ± a2tan2(x) Let t = tan(x) (跟一般 tan(θ

2) 代換觀念一樣 , 這邊 sin , cos 都有平方 , 是兩倍角)

=

Z dt

1 ± a2t2 = 1 a

Z du

1 ± u2, (u = at)

=









 1

atan−1(u) + C = 1

atan−1(a tan(x)) + C, for +a 1

atanh−1(u) + C = 1

atanh−1(a tan(x)) + C, for −a or 1

2aln

1 + a tan(x) 1 − a tan(x)

for −a

5. (8%) Evaluate the improper integral Z

0

xne−xdx, n is a positive integer.

Sol:

Let In= Z

0

xne−xdx = lim

t→∞−xne−x|t

0 + n Z

0

xn−1e−x

(3)

dx = nIn−1 (since lim

t→∞xne−x

t

0

= 0)

By Induction, In= nIn−1 = n(n − 1)In−2= · · · = n!I0 Consider I0 =R

0 e−xdx = lim

t→∞−e−x

t

0

= 1 Therefore, In= n!I0 = n!

6. (8%) Evaluate the improper integral Z

2

4x3+ x − 1

x2(x − 1)(x2+ 1)dx.

Sol:

f (x) ≡ 4x3+ x − 1

x2(x − 1)(x2+ 1) = 1

x2 + 2

x − 1 +−2x + 1 x2+ 1 Z

2

f (x)dx = Z

2

1 x2 +

Z 2

2 x − 1+

Z 2

−2x x2+ 1 +

Z 2

1 x2+ 1

= lim

t→∞[−1

t + 2 ln |t − 1| − ln |t2+ 1| + tan−1t] − [−1

2 − ln 5 + tan−12]

= lim

t→∞[−1

x+ ln |(x − 1)2

x2+ 1 | + tan−1x] +1

2+ ln 5 − tan−12

= π 2 + 1

2+ ln 5 − tan−12

7. (8%) Solve the differential equation (cos x)dy

dx + (sin x)y = sin2x · tan2x.

Sol:

dy

dx + tan x · y = sin x · tan3x · · ·N

1

I(x) = eRtan xdx = e−ln| cos x|

= sec x I(x) ·O

1

= sec x · y0 + sec x · tan x · y = tan4x d

dxsec x · y = tan4x ⇒ sec ·y = Z

tan4xdx

∵ Z

tan4x = Z

tan2x(sec2x − 1)dx = Z

tan2xd tan x − Z

tan2xdx

= 1

3tan3x − Z

(sec2x − 1)dx = 1

3tan3x − tan x + x + c

∴ y = 1

3tan2x sin x − sin x + cos x · x + c cos x

8. (8%) Find the orthogonal trajectories of the family of curves y = k

1 + x2. (Discuss for the cases k = 0 and k 6= 0.)

Sol:

(4)

case1(k 6= 0):

[y = k

1 + x2 ⇒ y + x2y = k ⇒ y0+ 2xy + x2y0 = 0 ⇒ y0 = −2xy 1 + x2] so the dy

dx for the orthogonal trajectory is [dy

dx = 1 + x2 2xy ⇒

Z

2ydy = Z 1

x + xdx ⇒ y2 = ln |x| +x2

2 + C, y 6= 0]

case2(k = 0):

∵ k = 0 ∴ the function is y = 0(x-axis) so the orthogonal trajectory is x = c, c ∈R 9. (20%) A curve is defined by





x = t2− 2t y = −t3+ 3t2

, t ∈ R.

(a) Find the point at which the curve crosses itself.

(b) Find the points on C where the tangent is horizontal or vertical.

(c) Let R be the region enclosed by the loop of the curve. If R is rotated about the line x = −1, find the volume of the resulting solid.

(d) Find the centroid of R.

Sol:

(a) Let t1 6= t2 ∈ R , and (t12−2t1 ,−t13+3t12)=( t22−2t2 ,−t23+3t22)





t12−2t1= t22−2t2

−t13+3t12=−t23+3t22





(t1− t2)(t1+ t2) = 2(t1− t2))

3(t1− t2)(t1+ t2) = (t1− t2)(t21+ t1t2 + t22)

(5)

Since t1 6= t2





t1+t2= 2 t1t2=−2

⇒ t1, t2=1 ±√

3 So, we have the point (2,2) i.e. the intersection of the curve.

(b) (i) the point on C where the tangent line of horizontal Let dy

dt=0 ⇒ −3t2+6t = 0⇒ t=0 or 2 then we have the points (0,0) , (0,4).

(ii) the point on C where the tangent line of vertical (Sol) Let dy

dt=0⇒ 2t−2 = 0⇒t = 1 then we have the point (-1,2).

(c)

V = Z

2πr(dr)h

= 2π Z

(x + 1)(dx)2(y − 2)

= −8π

Z t=1+ 3 t=1

(t − 1)4[(t − 1)2− 3]d(t − 1)

= −8π Z a=

3 a=0

a4[a2− 3]da

= 432√ 3π 35 (d) A =

Z t=1+ 3 t=1

−4(t2− 2t)(t − 1)[(t − 1)2− 3](t − 1)dt = 48√ 3 35 R =

Z t=1+ 3 t=1

−4(t − 1)[(t − 1)2 − 3](t − 1) d(t − 1) = 24√ 3 5 xc = A

R = 2

7, yc = 2

10. (16%) Let R be the region lying inside the curve r2 = 2 cos θ and outside the curve r = 2−2 cos θ.

(a) Find the area of R.

(b) Find the area of the surface of the solid obtained by rotating R about the x-axis.

Sol:

2 cos θ = (2 − 2 cos θ)2

⇒ 4 cos2θ − 10 cos θ + 4 = 0

(6)

⇒ (2 cos θ − 1)(cos θ − 2) = 0

⇒ θ = ±π

3, which is the angle where two curve intersect.

(a)

R = 2 Z π3

0

cos θ − 1

2(2 − 2 cos θ)2

= Z π3

0

−4 + 10 cos θ − 4 cos2θdθ

= Z π3

0

−6 + 10 cos θ − 2 cos 2θdθ

= 9√ 3 2 − 2π (b)

A = Z π3

0

2πyds = Z π3

0

2πr sin θ√

˙r2+ r2

= Z π3

0

2 cos θ sin θ

rsin2θ

2 cos θ + 2 cos θdθ + Z π3

0

2π(2 − 2 cos θ) sin θp

(2 sin θ)2+ (2 − 2 cos θ)2

= −2π Z π3

0

√1 + 3 cos2θd cos θ + 2π Z π3

0

(2 − 2 cos θ)32d(2 − 2 cos θ)

= 2π

√3

Z tan θ= 3 tan θ=

3 2

sec3θdθ + 4 5π

= 2π

√3(1

2sec θ tan θ + 1

2ln | sec θ + tan θ|)

tan θ= 3 tan θ=

3 2

+ 4 5π

= 14π 5 −

√7π 4 + π

√3ln 4 +√

√ 3 7 +√

3

參考文獻

相關文件

[r]

(a) (4%) Show that the area of an ellipse with the semi-major axis of length a and the semi-minor axis of length b is abπ.. The door is opened or closed by rotating OB about

[r]

Another boat has been heading due west at 15 km/h and reaches the same dock at 6 ∶ 00 PM.. At what time were the two boats

[r]

The minimal ellipse that can enclosed the cirlce is tangent to the circle, and the tangent point (x, y) has one possible solution for y variable.. This is our constrain

[r]

[r]