• 沒有找到結果。

1. (12%) Y y = y(t)  (sec t)y

N/A
N/A
Protected

Academic year: 2022

Share "1. (12%) Y y = y(t)  (sec t)y"

Copied!
6
0
0

加載中.... (立即查看全文)

全文

(1)

Sol:

(sec t)y0+ y = 1=⇒y0 + (cos t)y = cos t integrating factor µ(t) = eRcos tdt= esin t

y0+ (cos t)y = cos t=⇒esin ty0+ esin t(cos t)y = esin tcos t

=⇒(esin ty)0 = esin tcos t=⇒esin ty =R esin tcos tdt = esin t+ c

=⇒y = 1 + ce− sin t

by y(0) = 0, 0 = 1 + c=⇒c = −1

∴y = 1 − e− sin t

2. (12%) 求解 y = y(t) 滿足 yy0 = ty + t 且 y(0) = 0 。只須求出 y 和 t 之關係式 , 不必將 y 寫成 t 之 顯函數 。 提示 : ty + t = t(y + 1) 。

Sol:

yy0 = ty + t

⇒ y

1 + yy0 = t

Z y

1 + yy0dt = Z

tdt

Z y

1 + ydy = Z

tdt

⇒ Z

1 − 1

1 + ydy = Z

tdt

⇒ y − ln|1 + y| = t2 2 + C

y(0) = 0 ⇒ 0 − ln|1 + 0| = 0 + C ⇒ C = 0

⇒ y − ln|1 + y| = t2 2 3. (12%) 已知

Z ∞

−∞

e−x2dx =√ π , 求

Z ∞

−∞

e−x2−xdx 之值 。

(2)

Sol:

Z ∞

−∞

e−x2−xdx = Z ∞

−∞

e−x2−x−14+14dx

= Z ∞

−∞

e−(x+12)2+14dx

= Z ∞

−∞

e−(x+12)2e14dx

= e14 Z ∞

−∞

e−(x+12)2dx

作變數代換, 取y=x + 1

2則dy=dx 式子就變成 = e14

Z ∞

−∞

e−y2dy 再根據題目所給的已知

Z ∞

−∞

e−x2dx=√

π 得 = e14√ π

4. (12%) 求瑕積分 Z ∞

2

ln x dx

x3 之值 。 Sol:

method.1

Z ∞ 2

ln x

x3 dx = lim

b→∞

Z b 2

ln x x3 dx

= lim

b→∞(ln x(x−2

−2) + x−2

−4)

b 2

= ln 2 8 + 1

16 method.2

Z ∞ 2

ln x

x3 dx = lim

b→∞

Z b 2

ln x x3 dx

= lim

b→∞

Z b 2

ln xd(x−2

−2)

= lim

b→∞(x−2

−2 ln x

b 2−

Z b 2

x−3

−2dx)

= ln 2

8 + lim

b→∞

Z b 2

x−3 2 dx

= ln 2

8 + lim

b→∞(x−2

−4)

b 2

= ln 2 + 1

(3)

意 X ≤ 3 。 求

(a) P (X = 0) , P (X = 1) , P (X = 2) 及 P (X = 3) 。 (b) E(X) 。

(c) Var(X) 。 Sol:

(a)

P(X = 0) = C54 C84 = 1

14; P(X = 1) = C53C31

C84 = 3 7; P(X = 2) = C52C32

C84 = 3 7; P(X = 3) = C51C33

C84 = 1 14. (b)

E(X) =

3

X

k=0

k · P(X = k)

= 0 · 1

14+ 1 · 3

7+ 2 · 3

7 + 3 · 1 14

= 3 2. (c)

Var(X) = E((X − E(X))2)

= E(X2) − E2(X)

= 02 · 1

14 + 12· 3

7+ 22· 3

7+ 32· 1 14

−3 2

2

= 39 14− 9

4

= 15 28.

(4)

6. (共 16% , 各 4%) 某種樹葉 , 其長度 X 為一隨機變數 。 其機率密度為

f (x) =





k(4x − x2) , 當 0 ≤ x ≤ 4 0 , 當 x < 0 或 x > 4 其中 k 為常數 。

(a) 求 k 之值 。 (b) 求 P (X ≥ 3) 。

(c) 求葉子之平均長度 (即 E(X)) 。 (d) 求 Var(X) 。

Sol:

(a)

Z 4 0

k(4x − x2)dx = 1 k



2x2−x3 3



4 0



= 1 k(32 − 64

3 ) = 1

⇒ k = 3 32 (b)

P (X ≥ 3) = 3 32

Z 4 3

4x − x2dx

= 3 32



2x2− x3 3



4 3

= 5 32

(5)

E(X) = 3 32

Z 4 0

4x2− x3dx

= 3 32

 4

3x3 −x4 4



4 0

= 3 32

 256 3 − 64



= 3 32· 64

3 = 2 (d)

Var(X) = E(X2) − (E(X))2

= 3 32

Z 4 0

4x3− x4dx − 4

= 3 32



x4−x5 5



4 0

− 4

= 3 32· 256

5 − 4 = 4 5 7. (12%) 一離散隨機變數 X , 取值為 0, 1, 2, · · · , 若滿足

P (X = k) = e−λλk

k! , k = 0, 1, 2, · · · , 其中 λ 為大於 0 之常數 , 則稱其有 Poisson 分佈 。 求 E(X) 。

Sol:

Given P (X = k) = e−λλk

k! k = 0, 1, 2...

then:

E(X) =

X

n=1

kP (X = k) = λe−λ

X

n=1

λk−1

(k − 1)! = λe−λeλ = λ

8. (共 12% , 各 6%) 每週被丟棄在公路上的車輛數為 Poisson 分佈 。 假設平均每週被丟棄的車輛數為 2 。

(a) 求下週沒有車輛被丟棄之機率 。 (b) 求下週至少有兩輛被丟棄之機率 。 Sol:

(6)

(a) ∵ P (X = k) = e−λλk

k! , where λ = 2,

∴ P (X = 0) = e−220 0! = e−2

(b) P (X ≥ 2) = 1 − P (X = 0) − P (X = 1) = 1 − e−2− 21

1!e−2 = 1 − e−2− 2e−2 = 1 − 3e−2

參考文獻

相關文件

CHANGE TO POLAR COORDINATES IN A DOUBLE INTEGRAL If is contin- uous on a polar rectangle given by , , where..

CHANGE OF VARIABLES IN A DOUBLE INTEGRAL Suppose that is a transformation whose Jacobian is nonzero and that maps a region in the - plane onto a region in the -plane..

[r]

The closed curve theorem tells us that the integral of a function that is holomorphic in an open disk (or an open polygonally simply connected region) D over a closed contour C ⊂ D

The proof is left to the reader as an exercise.. If f is differentiable at x 0 , its derivative

(Hint: use the triangle inequality and the Cauchy’s

[r]

(12%) Car A at the lower level pulls car B, which is located on the upper level 9 meters higher, with constant velocity 5 m/min to the right while a pulley 6 meters above the