• 沒有找到結果。

Section 14.3 Partial Derivatives

N/A
N/A
Protected

Academic year: 2022

Share "Section 14.3 Partial Derivatives"

Copied!
3
0
0

加載中.... (立即查看全文)

全文

(1)

Section 14.3 Partial Derivatives

SECTION 14.3 PARTIAL DERIVATIVES ¤ 405

5. (a) If we start at (1 2) and move in the positive -direction, the graph of  increases. Thus (1 2)is positive.

(b) If we start at (1 2) and move in the positive -direction, the graph of  decreases. Thus (1 2)is negative.

6. (a) The graph of  decreases if we start at (−1 2) and move in the positive -direction, so (−1 2) is negative.

(b) The graph of  decreases if we start at (−1 2) and move in the positive -direction, so (−1 2) is negative.

7. (a) = (), so is the rate of change of in the -direction. is negative at (−1 2) and if we move in the positive -direction, the surface becomes less steep. Thus the values of are increasing and (−1 2) is positive.

(b) is the rate of change of in the -direction. is negative at (−1 2) and if we move in the positive -direction, the surface becomes steeper. Thus the values of are decreasing, and (−1 2) is negative.

8. (a) = (), so is the rate of change of in the -direction. is positive at (1 2) and if we move in the positive

-direction, the surface becomes steeper, looking in the positive -direction. Thus the values of are increasing and

(1 2)is positive.

(b) is negative at (−1 2) and if we move in the positive -direction, the surface gets steeper (with negative slope), looking in the positive -direction. This means that the values of are decreasing as  increases, so (−1 2) is negative.

9.First of all, if we start at the point (3 −3) and move in the positive -direction, we see that both  and  decrease, while  increases. Both  and  have a low point at about (3 −15), while  is 0 at this point. So  is definitely the graph of , and one of  and  is the graph of . To see which is which, we start at the point (−3 −15) and move in the positive -direction.

traces out a line with negative slope, while  traces out a parabola opening downward. This tells us that  is the -derivative of . So  is the graph of ,  is the graph of , and  is the graph of .

10.(2 1)is the rate of change of  at (2 1) in the -direction. If we start at (2 1), where (2 1) = 10, and move in the positive -direction, we reach the next contour line [where ( ) = 12] after approximately 06 units. This represents an average rate of change of about062 . If we approach the point (2 1) from the left (moving in the positive -direction) the output values increase from 8 to 10 with an increase in  of approximately 09 units, corresponding to an average rate of change of092 . A good estimate for (2 1)would be the average of these two, so (2 1) ≈ 28. Similarly, (2 1)is the rate of change of  at (2 1) in the -direction. If we approach (2 1) from below, the output values decrease from 12 to 10 with a change in  of approximately 1 unit, corresponding to an average rate of change of −2. If we start at (2 1) and move in the positive -direction, the output values decrease from 10 to 8 after approximately 0.9 units, a rate of change of−209. Averaging these two results, we estimate (2 1) ≈ −21.

11.  ( ) = 16 − 42− 2 ⇒ ( ) = −8 and ( ) = −2 ⇒ (1 2) = −8 and (1 2) = −4. The graph of  is the paraboloid  = 16 − 42− 2and the vertical plane  = 2 intersects it in the parabola  = 12 − 42,  = 2

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

408 ¤ CHAPTER 14 PARTIAL DERIVATIVES 24.  = 

 + 2 ⇒ 

 =0( + 2) − (1)

( + 2)2 = − 

( + 2)2, 

 =( + 2) − (2)

( + 2)2 =( + 2− 2) ( + 2)2 25. ( ) = (2 − 3)5 ⇒ ( ) = 5(2 − 3)4· 2 = 10(2 − 3)4,

( ) = 5(2 − 3)4(2− 32) = 5(2− 32)(2 − 3)4

26. ( ) = sin( cos ) ⇒ ( ) = cos( cos ) · cos  = cos  cos( cos ),

( ) = cos( cos )(− sin ) = − sin  cos( cos )

27. ( ) = tan−1(2) ⇒ ( ) = 1

1 + (2)2 · 2= 2

1 + 24, ( ) = 1

1 + (2)2 · 2 = 2

1 + 24 28.  ( ) =  ⇒ ( ) = −1, ( ) = ln 

29.  ( ) =

cos()  ⇒ ( ) = 



cos

 = cos()by the Fundamental Theorem of Calculus, Part 1;

( ) = 



cos

 = 



cos



= − 



cos

 = − cos().

30.  ( ) =

3+ 1  ⇒

( ) = 



3+ 1  = 



3+ 1 

= − 



3+ 1  = −

3+ 1by the Fundamental

Theorem of Calculus, Part 1; ( ) = 



3+ 1  =

3+ 1.

31.  (  ) = 32+ 2 ⇒ (  ) = 322, (  ) = 32+ 2, (  ) = 23 + 2

32.  (  ) = 2− ⇒ (  ) = 2

 · −(−) + −· 1

= (1 − )2−, (  ) = 2−,

(  ) = 2−(−) = −22−

33.  = ln( + 2 + 3) ⇒ 

 = 1

 + 2 + 3, 

 = 2

 + 2 + 3, 

 = 3

 + 2 + 3

34.  =  tan( + 2) ⇒ 

 =  [sec2( + 2)](1) =  sec2( + 2), 

 = tan( + 2),



 =  [sec2( + 2)](2) = 2 sec2( + 2)

35.  =√

4+ 2cos  ⇒ 

 = 12(4+ 2cos )−12(43) = 23

√4+ 2cos ,



= 12(4+ 2cos )−12(2 cos ) =  cos 

√4+ 2cos , 

 =12(4+ 2cos )−12[2(− sin )] = − 2sin  2√

4+ 2cos 

36.  =  ⇒ =

 ()−1, = ln  ·1

 =

 ln , = ln  ·−

2 = −

2 ln 

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 14.3 PARTIAL DERIVATIVES ¤ 409

37. (   ) = 2 cos() ⇒ (   ) = 2 cos(), (   ) = 2cos(),

(   ) = −2 sin()(1) = (−2) sin(), (   ) = −2 sin()(−−2) = (22) sin()

38. (   ) = + 2

 + 2 ⇒ (   ) = 1

 + 2() = 

 + 2,

(   ) = 1

 + 2(2) = 2

 + 2, (   ) =( + 2)(0) − ( + 2)()

( + 2)2 = −( + 2) ( + 2)2 ,

(   ) =( + 2)(0) − ( + 2)(2)

( + 2)2 = −2( + 2) ( + 2)2

39.  =

21+ 22+ · · · + 2. For each  = 1,   , , = 12

21+ 22+ · · · + 2−12

(2) = 

21+ 22+ · · · + 2

.

40.  = sin(1+ 22+ · · · + ). For each  = 1,   , , =  cos(1+ 22+ · · · + ).

41. ( ) =  ⇒ ( ) =  · (−2) + · 1 = 1 −

, so (0 1) =

 1 −0

1

01= 1.

42.  ( ) =  sin−1() ⇒ ( ) =  · 1

1 − ()2() + sin−1() · 1 = 

1 − 22 + sin−1(),

so 

112

= 1 ·12

1 − 121 2

2 + sin−1 1 ·12

=

1

2 3 4

+ sin−1 12 =1 3 +6.

43.  (  ) = ln1 −

2+ 2+ 2 1 +

2+ 2+ 2

(  ) = 1 1 −

2+ 2+ 2 1 +

2+ 2+ 2

·

 1 +

2+ 2+ 2

12(2+ 2+ 2)−12· 2

− 1 −

2+ 2+ 2

1

2(2+ 2+ 2)−12· 2

 1 +

2+ 2+ 22

=1 +

2+ 2+ 2 1 −

2+ 2+ 2 ·−(2+ 2+ 2)−12 1 +

2+ 2+ 2+ 1 −

2+ 2+ 2

1 +

2+ 2+ 22

= −(2+ 2+ 2)−12(2)

1 −

2+ 2+ 2

1 +

2+ 2+ 2 = −2

2+ 2+ 2[1 − (2+ 2+ 2)]

so (1 2 2) = √ −2(2)

12+ 22+ 22[1 − (12+ 22+ 22)]= √ −4

9 (1 − 9) =1 6.

44.  (  ) =  ⇒ (  ) = (ln )() = ln , so ( 1 0) = 1(1)(0)ln  = 1.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

410 ¤ CHAPTER 14 PARTIAL DERIVATIVES

45.  ( ) = 2− 3 ⇒

( ) = lim

→0

 ( +  ) − ( )

 = lim

→0

( + )2− ( + )3 − (2− 3)

= lim

→0

(2− 32 − 3 − 2)

 = lim

→0(2− 32 − 3 − 2) = 2− 32

( ) = lim

→0

 (  + ) − ( )

 = lim

→0

( + )2− 3( + ) − (2− 3)

 = lim

→0

(2 +  − 3)

= lim

→0(2 +  − 3) = 2 − 3 46.  ( ) = 

 + 2

( ) = lim

→0

 ( +  ) − ( )

 = lim

→0

+

++2+2

 ·( +  + 2)( + 2) ( +  + 2)( + 2)

= lim

→0

( + )( + 2) − ( +  + 2)

( +  + 2)( + 2) = lim

→0

2

( +  + 2)( + 2)

= lim

→0

2

( +  + 2)( + 2) = 2 ( + 2)2

( ) = lim

→0

 (  + ) − ( )

 = lim

→0

+(+)2+2

 ·

 + ( + )2 

 + 2

 + ( + )2

( + 2)

= lim

→0

( + 2) − 

 + ( + )2

[ + ( + )2]( + 2) = lim

→0

(−2 − )

[ + ( + )2]( + 2)

= lim

→0

−2 − 

[ + ( + )2]( + 2) = −2

( + 2)2

47.2+ 22+ 32= 1 ⇒ 

(2+ 22+ 32) = 

(1) ⇒ 2 + 0 + 6

 = 0 ⇒ 6

 = −2 ⇒



= −2

6 = − 3, and 

(2+ 22+ 32) = 

(1) ⇒ 0 + 4 + 6

 = 0 ⇒ 6

 = −4 ⇒



 = −4

6 = −2

3.

48.2− 2+ 2− 2 = 4 ⇒ 

(2− 2+ 2− 2) = 

(4) ⇒ 2 − 0 + 2 

− 2

 = 0 ⇒ (2 − 2)

 = −2 ⇒ 

 = −2

2 − 2 = 

1 − , and 

(2− 2+ 2− 2) = 

(4) ⇒ 0 − 2 + 2

− 2

 = 0 ⇒ (2 − 2)

 = 2 ⇒ 

 = 2

2 − 2= 

 − 1.

49. =  ⇒ 

() = 

() ⇒  

= 



+  · 1

⇒  

− 

 =  ⇒ (− )

= , so

 = 

− .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 14.3 PARTIAL DERIVATIVES ¤ 411

() = 

() ⇒  

 = 



+  · 1

⇒  

 − 

 =  ⇒ (− )

 = , so



 = 

− .

50.  +  ln  = 2 ⇒ 

( +  ln ) = 

(2) ⇒ 

+ ln  = 2

 ⇒ ln  = 2

− 

 ⇒

ln  = (2 − )

, so

= ln  2 − .

( +  ln ) = 

(2) ⇒ 

+  · 1 +  · 1

 = 2

 ⇒  + 

 = 2

 − 

 ⇒

 +

 = (2 − )

, so

 =  + ()

2 −  =  + 

(2 − ).

51. (a)  = () + () ⇒ 

 = 0(), 

 = 0() (b)  = ( + ). Let  =  + . Then

 = 





 = 

(1) = 0() = 0( + ),



 = 





 = 

(1) = 0() = 0( + ).

52. (a)  = ()() ⇒ 

= 0()(), 

 =  ()0() (b)  = (). Let  = . Then

 = and 

 = . Hence

= 





= 

·  = 0() = 0() and 

 = 





 = 

·  = 0() = 0().

(c)  = 



. Let  =

. Then

 = 1

 and

 = −

2. Hence

= 





 = 0()1

 = 0()

 and 

 = 





 = 0()

−

2

= −0()

2 .

53.  ( ) = 4 − 232 ⇒ ( ) = 43 − 622, ( ) = 4− 43. Then ( ) = 122 − 122,

( ) = 43− 122, ( ) = 43− 122, and ( ) = −43.

54.  ( ) = ln( + ) ⇒ ( ) = 

 +  = ( + )−1, ( ) = 

 +  = ( + )−1. Then

( ) = −( + )−2() = − 2

( + )2, ( ) = −( + )−2() = − 

( + )2,

( ) = −( + )−2() = − 

( + )2, and ( ) = −( + )−2() = − 2 ( + )2.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 14.3 PARTIAL DERIVATIVES ¤ 411

() = 

() ⇒  

 = 



+  · 1

⇒  

 − 

 =  ⇒ (− )

 = , so



 = 

− .

50.  +  ln  = 2 ⇒ 

( +  ln ) = 

(2) ⇒ 

+ ln  = 2

 ⇒ ln  = 2

− 

 ⇒

ln  = (2 − )

, so

= ln  2 − .

( +  ln ) = 

(2) ⇒ 

+  · 1 +  · 1

 = 2

 ⇒  + 

 = 2

 − 

 ⇒

 +

 = (2 − )

, so

 =  + ()

2 −  =  + 

(2 − ).

51. (a)  = () + () ⇒ 

 = 0(), 

 = 0() (b)  = ( + ). Let  =  + . Then

 = 





 = 

(1) = 0() = 0( + ),



 = 





 = 

(1) = 0() = 0( + ).

52. (a)  = ()() ⇒ 

= 0()(), 

 =  ()0() (b)  = (). Let  = . Then

 = and 

 = . Hence

= 





= 

·  = 0() = 0() and 

 = 





 = 

·  = 0() = 0().

(c)  = 



. Let  =

. Then

 = 1

 and

 = −

2. Hence

= 





 = 0()1

 = 0()

 and 

 = 





 = 0()

−

2

= −0()

2 .

53.  ( ) = 4 − 232 ⇒ ( ) = 43 − 622, ( ) = 4− 43. Then ( ) = 122 − 122,

( ) = 43− 122, ( ) = 43− 122, and ( ) = −43.

54.  ( ) = ln( + ) ⇒ ( ) = 

 +  = ( + )−1, ( ) = 

 +  = ( + )−1. Then

( ) = −( + )−2() = − 2

( + )2, ( ) = −( + )−2() = − 

( + )2,

( ) = −( + )−2() = − 

( + )2, and ( ) = −( + )−2() = − 2 ( + )2.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

(2)

414 ¤ CHAPTER 14 PARTIAL DERIVATIVES

70.  = . If  = 0, or if  = 0 or 1, or if  = 0, 1, or 2, then 6

 23 = 0. Otherwise

 = −1,

2

2 = ( − 1)−2, 3

3 = ( − 1)( − 2)−3, 4

 3 = ( − 1)( − 2)−1−3,

5

23 = ( − 1)( − 1)( − 2)−2−3, and 6

 23 = ( − 1)( − 1)( − 2)−1−2−3. 71. Assuming that the third partial derivatives of  are continuous (easily verified), we can write = . Then

 (  ) = 23+ arcsin

√



⇒ = 23+ 0, = 23, and = 62= .

72. Let (  ) =√

1 + and (  ) = √1 −  so that  =  + . Then = 0 = = and

= 0 = = . But (since the partial derivatives are continous on their domains) = and = , so

= + = 0 + 0 = 0.

73. By Definition 4, (3 2) = lim

→0

 (3 +  2) − (3 2)

 which we can approximate by considering  = 05 and  = −05:

(3 2) ≈ (35 2) − (3 2)

05 =224 − 175

05 = 98, (3 2) ≈ (25 2) − (3 2)

−05 =102 − 175

−05 = 146. Averaging these values, we estimate (3 2)to be approximately 122. Similarly, (3 22) = lim

→0

 (3 +  22) − (3 22)

 which

we can approximate by considering  = 05 and  = −05: (3 22) ≈ (35 22) − (3 22)

05 =261 − 159 05 = 204,

(3 22) ≈ (25 22) − (3 22)

−05 =93 − 159

−05 = 132. Averaging these values, we have (3 22) ≈ 168.

To estimate (3 2), we first need an estimate for (3 18):

(3 18) ≈ (35 18) − (3 18)

05 =200 − 181

05 = 38, (3 18) ≈ (25 18) − (3 18)

−05 =125 − 181

−05 = 112.

Averaging these values, we get (3 18) ≈ 75. Now ( ) = 

[( )]and ( )is itself a function of two variables, so Definition 4 says that ( ) = 

[( )] = lim

→0

(  + ) − ( )

 ⇒

(3 2) = lim

→0

(3 2 + ) − (3 2)

 . We can estimate this value using our previous work with  = 02 and  = −02:

(3 2) ≈(3 22) − (3 2)

02 = 168 − 122

02 = 23, (3 2) ≈(3 18) − (3 2)

−02 = 75 − 122

−02 = 235.

Averaging these values, we estimate (3 2)to be approximately 2325.

74. (a) If we fix  and allow  to vary, the level curves indicate that the value of  decreases as we move through  in the positive

-direction, so is negative at  .

(b) If we fix  and allow  to vary, the level curves indicate that the value of  increases as we move through  in the positive

-direction, so is positive at  .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

416 ¤ CHAPTER 14 PARTIAL DERIVATIVES By symmetry, = 22− 2− 2

(2+ 2+ 2)52 and = 22− 2− 2 (2+ 2+ 2)52. Thus + + =22− 2− 2+ 22− 2− 2+ 22− 2− 2

(2+ 2+ 2)52 = 0.

78. (a)  = sin() sin() ⇒ =  sin() cos(), = −22sin() sin(), =  cos() sin(),

= −2sin() sin(). Thus = 2. (b)  = 

22− 2 ⇒  = (22− 2) − (22)

(22− 2)2 = − 22+ 2 (22− 2)2,

= −22(22− 2)2+ (22+ 2)(2)(22− 2)(22)

(22− 2)4 = 243+ 622 (22− 2)3 ,

= (−1)(22− 2)−2(−2) = 2

(22− 2)2,

= 2(22− 2)2− 2 (2)(22− 2)(−2)

(22− 2)4 = 223− 22+ 82

(22− 2)3 =223+ 62 (22− 2)3. Thus = 2.

(c)  = ( − )6+ ( + )6 ⇒ = −6( − )5+ 6( + )5, = 302( − )4+ 302( + )4,

= 6( − )5+ 6( + )5, = 30( − )4+ 30( + )4. Thus = 2. (d)  = sin( − ) + ln( + ) ⇒ = − cos( − ) + 

 + , = −2sin( − ) − 2 ( + )2,

= cos( − ) + 1

 + , = − sin( − ) − 1

( + )2. Thus = 2. 79. Let  =  + ,  =  − . Then = [ () + ()]

 = ()





 +()





 = 0() − 0()and

= [0() − 0()]

 = [00() + 00()] = 2[00() + 00()]. Similarly, by using the Chain Rule we have

= 0() + 0()and = 00() + 00(). Thus = 2.

80. For each ,  = 1     , = 11+22+···+ and 22 = 211+22+···+.

Then2

21 +2

22 + · · · + 2

2 =

21+ 22+ · · · + 2

11+22+···+= 11+22+···+= 

since 21+ 22+ · · · + 2= 1.

81. ( ) = 1

√4−2(4)



= 1

√4· −2(4)

−2(−1)(4)−2(4)

+ −2(4)·

12

(4)−32(4)

= (4)−32

4 · 2

42 − 2

−2(4)= 2

(4)32

 2 2− 1

−2(4),



= 1

√4−2(4)·−2

4 = −2

(4)32−2(4), and

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 14.3 PARTIAL DERIVATIVES ¤ 417

2

2 = −2

(4)32

 · −2(4)·−2

4+ −2(4)· 1

= −2

(4)32

− 2 2+ 1

−2(4)= 2

(4)32

 2 2− 1

−2(4).

Thus

 = 2

(4)32

 2 2− 1

−2(4)= 

 2

(4)32

 2 2− 1

−2(4)

=  2

2.

82. (a)  = −60(2)(1 + 2+ 2)2, so at (2 1), = −240(1 + 4 + 1)2= −203.

(b)  = −60(2)(1 + 2+ 2)2, so at (2 1), = −12036 = −103. Thus from the point (2 1) the temperature is decreasing at a rate of 203Cm in the -direction and is decreasing at a rate of103Cm in the -direction.

83.By the Chain Rule, taking the partial derivative of both sides with respect to 1gives

−1





1

= [(11) + (12) + (13)]

1 or −−2 

1 = −−21 . Thus 

1

= 2

21.

84. = , so

 = −1and 

 = −1. Then



+  

 = (−1) + (−1) = 1+−1+ 1+−1= ( + )= ( + )

85.If we fix  = 0  ( 0)is a function of a single variable , and

 = 

 is a separable differential equation. Then



 = 

 ⇒

 

 =



 ⇒ ln | | =  ln || +  (0), where (0)can depend on 0. Then

| | =  ln|| + (0), and since   0 and   0, we have  =  ln (0)= (0)ln = 1(0)where

1(0) = (0).

86. (a)  ( ) = 101075025 ⇒ ( ) = 101(075−025)025= 07575−025025and

( ) = 101075(025−075) = 02525075−075.

(b) The marginal productivity of labor in 1920 is (194 407) = 07575(194)−025(407)025≈ 0912. Recall that  , , and

are expressed as percentages of the respective amounts in 1899, so this means that in 1920, if the amount of labor is increased, production increases at a rate of about 0.912 percentage points per percentage point increase in labor. The marginal productivity of capital in 1920 is (194 407) = 02525(194)075(407)−075≈ 0145, so an increase in capital investment would cause production to increase at a rate of about 0.145 percentage points per percentage point increase in capital.

(c) The value of (194 407)is greater than the value of (194 407), suggesting that increasing labor in 1920 would have increased production more than increasing capital.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

(3)

SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS ¤ 421

(c) Since  differentiations are to be performed with three choices of variable at each differentiation, there are 3th-order partial derivatives of a function of three variables.

103. Let () = ( 0) = (2)−320=  ||−3. But we are using the point (1 0), so near (1 0), () = −2. Then

0() = −2−3and 0(1) = −2, so using (1) we have (1 0) = 0(1) = −2.

104.(0 0) = lim

→0

 (0 +  0) − (0 0)

 = lim

→0

(3+ 0)13− 0

 = lim

→0

= 1.

Or: Let () = ( 0) =3

3+ 0 = . Then 0() = 1and 0(0) = 1so, by (1), (0 0) = 0(0) = 1.

105. (a) (b) For ( ) 6= (0 0),

( ) =(32 − 3)(2+ 2) − (3 − 3)(2) (2+ 2)2

=4 + 423− 5 (2+ 2)2

and by symmetry ( ) =5− 432− 4 (2+ 2)2 .

(c) (0 0) = lim

→0

 ( 0) − (0 0)

 = lim

→0

(02) − 0

 = 0and (0 0) = lim

→0

 (0 ) − (0 0)

 = 0.

(d) By (3), (0 0) =

 = lim

→0

(0 ) − (0 0)

 = lim

→0

(−5− 0)4

 = −1 while by (2),

(0 0) = 

 = lim

→0

( 0) − (0 0)

 = lim

→0

54

 = 1.

(e) For ( ) 6= (0 0), we use a CAS to compute

( ) = 6+ 942− 924− 6 (2+ 2)3

Now as ( ) → (0 0) along the -axis, ( ) → 1 while as ( ) → (0 0) along the -axis, ( ) → −1. Thus isn’t continuous at (0 0) and Clairaut’s Theorem doesn’t apply, so there is no contradiction. The graphs of and are identical except at the origin, where we observe the discontinuity.

14.4 Tangent Planes and Linear Approximations

1.  =  ( ) = 22+ 2− 5 ⇒ ( ) = 4, ( ) = 2 − 5, so (1 2) = 4, (1 2) = −1.

By Equation 2, an equation of the tangent plane is  − (−4) = (1 2)( − 1) + (1 2)( − 2) ⇒

 + 4 = 4( − 1) + (−1)( − 2) or  = 4 −  − 6.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

3

參考文獻

相關文件

Full credit if they got (a) wrong but found correct q and integrated correctly using their answer.. Algebra mistakes -1% each, integral mistakes

For each case considered in Section 2, we show that the SHE bifurcates from the trivial solution to an attractor as the control parameter λ crosses the critical value λ 0.. As shown

If we start moving away from the origin along , say, the x-axis, the z-values of a cone centered at the origin increase at constant rate, so we would expect its level curves to

In this section, we consider a solution of the Ricci flow starting from a compact manifold of dimension n 12 with positive isotropic curvature.. Our goal is to establish an analogue

3) Determine the longest wavelength of light required to remove an electron from a sample of potassium metal, if the binding energy for an electron in K is 1.76 × 10 3 kJ/mol. In

Robinson Crusoe is an Englishman from the 1) t_______ of York in the seventeenth century, the youngest son of a merchant of German origin. This trip is financially successful,

fostering independent application of reading strategies Strategy 7: Provide opportunities for students to track, reflect on, and share their learning progress (destination). •

Now, nearly all of the current flows through wire S since it has a much lower resistance than the light bulb. The light bulb does not glow because the current flowing through it