• 沒有找到結果。

Section 14.3 Partial Derivatives 32. Find the first partial derivatives of the function.

N/A
N/A
Protected

Academic year: 2022

Share "Section 14.3 Partial Derivatives 32. Find the first partial derivatives of the function."

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Section 14.3 Partial Derivatives

32. Find the first partial derivatives of the function. u = xyz. Solution:

408 ¤ CHAPTER 14 PARTIAL DERIVATIVES 26. ( ) = arctan

√



⇒ ( ) = 1 1 +

√

2 ·√

 =

√ 1 + 2,

( ) = 1 1 +

√

2 · 

1 2−12

= 

2√

 (1 + 2)

27.  = sin  cos  ⇒ 

 = cos  cos , 

 = − sin  sin 

28. ( ) =  ⇒ ( ) = −1, ( ) = ln 

29.  ( ) =

cos()  ⇒ ( ) = 



cos

 = cos()by the Fundamental Theorem of Calculus, Part 1;

( ) = 



cos

 = 



cos



= − 



cos

 = − cos().

30.  ( ) =

3+ 1  ⇒

( ) = 



3+ 1  = 



3+ 1 

= − 



3+ 1  = −

3+ 1by the Fundamental

Theorem of Calculus, Part 1; ( ) = 



3+ 1  =

3+ 1.

31. (  ) = 32+ 2 ⇒ (  ) = 322, (  ) = 32+ 2, (  ) = 23 + 2

32. (  ) = 2− ⇒ (  ) = 2

 · −(−) + −· 1

= (1 − )2−, (  ) = 2−,

(  ) = 2−(−) = −22−

33.  = ln( + 2 + 3) ⇒ 

 = 1

 + 2 + 3, 

 = 2

 + 2 + 3, 

 = 3

 + 2 + 3

34.  =  tan( + 2) ⇒ 

 =  [sec2( + 2)](1) =  sec2( + 2), 

 = tan( + 2),



 =  [sec2( + 2)](2) = 2 sec2( + 2)

35.  =  sin−1() ⇒ 

=  sin−1(), 

 =  · 1

1 − ()2() + sin−1() ·  = 

1 − 22+  sin−1(),



 =  · 1

1 − ()2() = 2

1 − 22

36.  =  ⇒ = 

()−1, = ln  ·1

 = 

 ln , = ln  · −

2 = −

2 ln 

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

39. Find the indicated partial derivative. f (x, y, z) = ln1−

x2+y2+z2 1+

x2+y2+z2; fy(1, 2, 2).

Solution:

SECTION 14.3 PARTIAL DERIVATIVES ¤ 409

37. (   ) = 2 cos() ⇒ (   ) = 2 cos(), (   ) = 2cos(),

(   ) = −2 sin()(1) = (−2) sin(), (   ) = −2 sin()(−−2) = (22) sin()

38. (   ) = + 2

 + 2 ⇒ (   ) = 1

 + 2() = 

 + 2,

(   ) = 1

 + 2(2) = 2

 + 2, (   ) = ( + 2)(0) − ( + 2)()

( + 2)2 = −( + 2) ( + 2)2 ,

(   ) = ( + 2)(0) − ( + 2)(2)

( + 2)2 = −2( + 2) ( + 2)2

39.  =

21+ 22+ · · · + 2. For each  = 1,   , ,  = 12

21+ 22+ · · · + 2−12

(2) = 

21+ 22+ · · · + 2.

40.  = sin(1+ 22+ · · · + ). For each  = 1,   , ,  =  cos(1+ 22+ · · · + ).

41. ( ) =  ⇒ ( ) =  · (−2) + · 1 = 1 −

, so (0 1) =

 1 −0

1

01 = 1.

42. ( ) =  sin−1() ⇒ ( ) =  · 1

1 − ()2() + sin−1() · 1 = 

1 − 22 + sin−1(),

so  112

= 1 · 12

1 − 121 2

2 + sin−1 1 · 12

=

1

2 3 4

+ sin−1 12 = 1 3 +6.

43. (  ) = ln1 −

2+ 2+ 2 1 +

2+ 2+ 2

(  ) = 1 1 −

2+ 2+ 2 1 +

2+ 2+ 2

·

1 +

2+ 2+ 2

12(2+ 2+ 2)−12· 2

− 1 −

2+ 2+ 2

1

2(2+ 2+ 2)−12· 2

 1 +

2+ 2+ 22

= 1 +

2+ 2+ 2 1 −

2+ 2+ 2 ·−(2+ 2+ 2)−12 1 +

2+ 2+ 2+ 1 −

2+ 2+ 2

 1 +

2+ 2+ 22

= −(2+ 2+ 2)−12(2)

1 −

2+ 2+ 2

1 +

2+ 2+ 2 =  −2

2+ 2+ 2[1 − (2+ 2+ 2)]

so (1 2 2) = √ −2(2)

12+ 22+ 22[1 − (12+ 22+ 22)] = √ −4

9 (1 − 9) = 1 6.

44. (  ) =  ⇒ (  ) = (ln )() = ln , so ( 1 0) = 1(1)(0)ln  = 1.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

44. Use implicit differentiation to find ∂z/∂x and ∂z/∂y.

yz + x ln y = z2 Solution:

SECTION 14.3 PARTIAL DERIVATIVES ¤ 411

 () = 

() ⇒  

 = 



+  · 1

⇒  

 − 

 =  ⇒ (− )

 = , so



 = 

− .

50.  +  ln  = 2 ⇒ 

( +  ln ) = 

(2) ⇒ 

+ ln  = 2

 ⇒ ln  = 2 

− 

 ⇒

ln  = (2 − )

, so

= ln  2 − .

 ( +  ln ) = 

 (2) ⇒ 

 +  · 1 +  · 1

 = 2 

 ⇒  + 

 = 2

 − 

 ⇒

 + 

 = (2 − )

, so 

 =  + ()

2 −  =  + 

(2 − ).

51. (a)  = () + () ⇒ 

 = 0(), 

 = 0() (b)  = ( + ). Let  =  + . Then 

 = 





 = 

(1) = 0() = 0( + ),



 = 





 = 

(1) = 0() = 0( + ).

52. (a)  = ()() ⇒ 

 = 0()(), 

 =  ()0() (b)  = (). Let  = . Then 

 = and 

 = . Hence 

= 





 = 

·  = 0() = 0() and 

 = 





 = 

·  = 0() = 0().

(c)  = 



. Let  = 

. Then

 = 1

 and 

 = −

2. Hence 

 = 





 = 0()1

 = 0()

 and 

 = 





 = 0()

−

2

= −0()

2 .

53. ( ) = 4 − 232 ⇒ ( ) = 43 − 622, ( ) = 4− 43. Then ( ) = 122 − 122,

( ) = 43− 122, ( ) = 43− 122, and ( ) = −43.

54. ( ) = ln( + ) ⇒ ( ) = 

 +  = ( + )−1, ( ) = 

 +  = ( + )−1. Then

( ) = −( + )−2() = − 2

( + )2, ( ) = −( + )−2() = − 

( + )2,

( ) = −( + )−2() = − 

( + )2, and ( ) = −( + )−2() = − 2 ( + )2.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

62. Find the indicated partial derivative(s). V = ln(r + s2+ t3); ∂r∂s∂t3V Solution:

1

(2)

SECTION 14.3 PARTIAL DERIVATIVES ¤ 413

60.  = sin  ⇒ = sin ,  = cos  + (sin )( · + · 1) = ( cos  +  sin  + sin ),

= cos  + (sin )() = (cos  +  sin ),

= · sin  + (cos  +  sin ) · = (sin  +  cos  +  sin ). Thus  = . 61.  = cos(2) ⇒  = − sin(2) · 2 = −2 sin(2),

 = −2 · cos(2) · 2+ sin(2) · (−2) = −23 cos(2) − 2 sin(2)and

= − sin(2) · 2= −2sin(2), = −2· cos(2) · 2 + sin(2) · (−2) = −23 cos(2) − 2 sin(2).

Thus = .

62.  = ln( + 2) ⇒ = 1

 + 2 = ( + 2)−1,  = (−1)( + 2)−2(2) = − 2

( + 2)2 and

= 1

 + 2 · 2 = 2( + 2)−1, = (−2)( + 2)−2= − 2

( + 2)2. Thus  = . 63. ( ) = 42− 3 ⇒ = 432− 32, = 1222− 6, = 242− 6 and

= 83 − 32, = 242 − 6.

64. ( ) = sin(2 + 5) ⇒  = cos(2 + 5) · 5 = 5 cos(2 + 5), = −5 sin(2 + 5) · 2 = −10 sin(2 + 5),

= −10 cos(2 + 5) · 5 = −50 cos(2 + 5)

65. (  ) = 2 ⇒ = 2· 2= 22, = 2· 2(2) + 2· 2= (4+ 2)2,

 = (4+ 2) · 2(2) + 2· (43+ 2) = (2225+ 63+ 2)2. 66. (  ) = sin() ⇒ = sin(), = cos() ·  = cos(),

= (− sin() · ) + cos() ·  = [cos() −  sin()].

67.  =

 + 2 ⇒ 

 = 12( + 2)−12(2) = ( + 2)−12,

2

  = 

12

( + 2)−32(1) = −12( + 2)−32, 3

2 = −12

32

( + 2)−52(1) = 34( + 2)−52.

68.  = ln( + 2+ 3) ⇒ 

 = 32

 + 2+ 3 = 32( + 2+ 3)−1,

2

  = 32(−1)( + 2+ 3)−2(2) = −62( + 2+ 3)−2,

3

   = −62(−2)( + 2+ 3)−3(1) = 122( + 2+ 3)−3= 122 ( + 2+ 3)3.

69.  = sin  ⇒ 

 = cos  + sin  · () = (cos  +  sin ),

2

  = (sin ) + (cos  +  sin ) () = (sin  +  cos  +  sin ),

3

2 = ( sin ) + (sin  +  cos  +  sin ) ·  () = (2 sin  +  cos  +  sin ).

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

67. If f (x, y, z) = xy2z3+ arcsin(x√

z), find fxzy. [Hint:Which order of differentiation is easiest?]

Solution:

414 ¤ CHAPTER 14 PARTIAL DERIVATIVES 70.  = 

 −  = ( − )12 ⇒ 

 = 

1

2( − )−12(−1)

= −12( − )−12,

2

  = −12

12( − )−32(1)

= 14( − )−32, 3

   = 14( − )−32.

71. Assuming that the third partial derivatives of  are continuous (easily verified), we can write  = . Then

 (  ) = 23+ arcsin

√



⇒  = 23+ 0, = 23, and  = 62= .

72. Let (  ) =√

1 + and (  ) = √1 −  so that  =  + . Then  = 0 = = and

= 0 = = . But (since the partial derivatives are continous on their domains) = and  = , so

 = + = 0 + 0 = 0.

73. By Definition 4, (3 2) = lim

→0

 (3 +  2) − (3 2)

 which we can approximate by considering  = 05 and  = −05:

(3 2) ≈  (35 2) − (3 2)

05 = 224 − 175

05 = 98, (3 2) ≈  (25 2) − (3 2)

−05 = 102 − 175

−05 = 146. Averaging these values, we estimate (3 2)to be approximately 122. Similarly, (3 22) = lim

→0

 (3 +  22) − (3 22)

 which

we can approximate by considering  = 05 and  = −05: (3 22) ≈  (35 22) − (3 22)

05 = 261 − 159

05 = 204,

(3 22) ≈  (25 22) − (3 22)

−05 = 93 − 159

−05 = 132. Averaging these values, we have (3 22) ≈ 168.

To estimate (3 2), we first need an estimate for (3 18):

(3 18) ≈  (35 18) − (3 18)

05 = 200 − 181

05 = 38, (3 18) ≈  (25 18) − (3 18)

−05 = 125 − 181

−05 = 112.

Averaging these values, we get (3 18) ≈ 75. Now ( ) = 

[( )]and ( )is itself a function of two variables, so Definition 4 says that ( ) = 

 [( )] = lim

→0

(  + ) − ( )

 ⇒

(3 2) = lim

→0

(3 2 + ) − (3 2)

 . We can estimate this value using our previous work with  = 02 and  = −02:

(3 2) ≈ (3 22) − (3 2)

02 = 168 − 122

02 = 23, (3 2) ≈ (3 18) − (3 2)

−02 = 75 − 122

−02 = 235.

Averaging these values, we estimate (3 2)to be approximately 2325.

74. (a) If we fix  and allow  to vary, the level curves indicate that the value of  decreases as we move through  in the positive

-direction, so is negative at  .

(b) If we fix  and allow  to vary, the level curves indicate that the value of  increases as we move through  in the positive

-direction, so is positive at  .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

參考文獻

相關文件

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. Hence, the ellipse and hyperbola are

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part..  is periodic with