• 沒有找到結果。

Section 16.2 Line Integrals

N/A
N/A
Protected

Academic year: 2022

Share "Section 16.2 Line Integrals"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Section 16.2 Line Integrals

SECTION 16.2 LINE INTEGRALS ¤ 639 2. = 3and  = 4, 1 ≤  ≤ 2, so by Formula 3

()  =2

1(34)

(32)2+ (43)2 =2

1(1) · 2

9 + 162 =2 1 √

9 + 162

= 321 ·23

9 + 162322

1 =481(7332− 2532) or 481(73√

73 − 125)

3.Parametric equations for  are  = 4 cos ,  = 4 sin , −2 ≤  ≤2. Then

4 =2

−2(4 cos )(4 sin )4

(−4 sin )2+ (4 cos )2 =2

−245cos  sin4

16(sin2 + cos2) 

= 452

−2(sin4 cos )(4)  = (4)61

5sin52

−2= 46·25 = 16384 4.Parametric equations for  are  = 2 + 3,  = 4, 0 ≤  ≤ 1. Then

 =1

0 (2 + 3) 4

32+ 42 = 51

0 (2 + 3) 4

Integrating by parts with  = 2 + 3 ⇒  = 3 ,  = 4 ⇒  = 144gives

 = 51

4(2 + 3)416341 0= 55

44163412+163

=851642516

5.If we choose  as the parameter, parametric equations for  are  = ,  = 2for 0 ≤  ≤  and by Equations 7

2 + sin 

 = 0

2(2) + sin 

· 2  = 2 0

5+  sin 



= 21

66−  cos  + sin  0

where we integrated by parts in the second term

= 21

66+  + 0 − 0

=136+ 2

6.Choosing  as the parameter, we have  = 3,  = , −1 ≤  ≤ 1. Then

 =1

−13· 32 = 31

−1= 1− −1=  −1.

7.  = 1+ 2

On 1:  = ,  = 12 ⇒  = 12, 0 ≤  ≤ 2.

On 2:  = ,  = 3 −  ⇒  = −, 2 ≤  ≤ 3.

Then

( + 2)  + 2 =

1( + 2)  + 2 +

2( + 2)  + 2

=2 0

 + 21 2

+ 21 2

 +3 2

 + 2(3 − ) + 2(−1)



=2 0

2 +122

 +3 2

6 −  − 2



=

2+1632 0+

6 −1221333

2= 163 − 0 +92223 = 52

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 16.2 LINE INTEGRALS ¤ 639 2. = 3and  = 4, 1 ≤  ≤ 2, so by Formula 3

()  =2

1(34)

(32)2+ (43)2 =2

1(1) · 2

9 + 162 =2 1 √

9 + 162

= 321 ·23

9 + 162322

1 =481(7332− 2532) or 481(73√

73 − 125)

3.Parametric equations for  are  = 4 cos ,  = 4 sin , −2 ≤  ≤2. Then

4 =2

−2(4 cos )(4 sin )4

(−4 sin )2+ (4 cos )2 =2

−245cos  sin4

16(sin2 + cos2) 

= 452

−2(sin4 cos )(4)  = (4)61

5sin52

−2= 46·25 = 16384 4.Parametric equations for  are  = 2 + 3,  = 4, 0 ≤  ≤ 1. Then

 =1

0 (2 + 3) 4

32+ 42 = 51

0 (2 + 3) 4

Integrating by parts with  = 2 + 3 ⇒  = 3 ,  = 4 ⇒  = 144gives

 = 51

4(2 + 3)416341 0= 55

44163412+163

=851642516

5.If we choose  as the parameter, parametric equations for  are  = ,  = 2for 0 ≤  ≤  and by Equations 7

2 + sin 

 = 0

2(2) + sin 

· 2  = 2 0

5+  sin 



= 21

66−  cos  + sin  0

where we integrated by parts in the second term

= 21

66+  + 0 − 0

=136+ 2

6.Choosing  as the parameter, we have  = 3,  = , −1 ≤  ≤ 1. Then

 =1

−13· 32 = 31

−1= 1− −1=  −1.

7.  = 1+ 2

On 1:  = ,  = 12 ⇒  = 12, 0 ≤  ≤ 2.

On 2:  = ,  = 3 −  ⇒  = −, 2 ≤  ≤ 3.

Then

( + 2)  + 2 =

1( + 2)  + 2 +

2( + 2)  + 2

=2 0

 + 21

2 + 21

2

 +3 2

 + 2(3 − ) + 2(−1)



=2 0

2 +122

 +3 2

6 −  − 2



=

2+1632 0+

6 −1221333

2= 163 − 0 +92223 = 52

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

640 ¤ CHAPTER 16 VECTOR CALCULUS

8.  = 1+ 2

On 1:  = 2 cos  ⇒  = −2 sin  ,  = 2 sin  ⇒

 = 2 cos  , 0 ≤  ≤ 2.

On 2:  = 4 ⇒  = 4 ,  = 2 +  ⇒

 = , 0 ≤  ≤ 1.

Then

2 + 2 =

12 + 2 +

22 + 2

=2

0 (2 cos )2(−2 sin  ) + (2 sin )2(2 cos  ) +1

0(4)2(4 ) + (2 + )2

= 82

0 (− cos2 sin  + sin2 cos )  +1

0(652+ 4 + 4) 

= 81

3cos3 +13sin32 0 +65

33+ 22+ 41 0= 81

313

+653 + 2 + 4 =833

9.  = cos ,  = sin ,  = , 0 ≤  ≤ 2. Then by Formula 9,

2  =2

0 (cos )2(sin )



2

+



2

+



2



=2

0 cos2 sin 

(− sin )2+ (cos )2+ (1)2 =2

0 cos2 sin 

sin2 + cos2 + 1 

=√ 22

0 cos2 sin   =√ 2

13cos32

0 =√

2 0 +13

=32 10. Parametric equations for  are  = 3 − 2,  = 1 + ,  = 2 + 3, 0 ≤  ≤ 1. Then

2  =1

0 (1 + )2(2 + 3)

(−2)2+ 12+ 32 =√ 141

0 (33+ 82+ 7 + 2) 

=√ 143

44+833+722+ 21

0=√

143

4 +83 +72 + 2

= 10712√ 14 11. Parametric equations for  are  = ,  = 2,  = 3, 0 ≤  ≤ 1. Then

 =1

0 (2)(3)

12+ 22+ 32 =√ 141

0 62 =√ 14

1 12621

0=1214(6− 1).

12.

()2+ ()2+ ()2=

12+ (−2 sin 2)2+ (2 cos 2)2=

1 + 4(sin22 + cos22) =√5. Then

(2+ 2+ 2)  =2

0 (2+ cos22 + sin22)√

5  =√ 52

0 (2+ 1) 

=√ 51

33+ 2

0 =√

51

3(83) + 2

=√ 58

33+ 2 13.

 =1

0()(2)(2)(3)· 2  =1

0 245 = 2551

0= 25(1− 0) = 25( − 1) 14.

  +   +   =4

1  ·12−12 + 2·  +√

 · 2  =4 1

1

212+ 2+ 232



=

1

332+133+45524

1=83 +643 +1285131345 =72215

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 16.2 LINE INTEGRALS ¤ 641

15. Parametric equations for  are  = 1 + 3,  = ,  = 2, 0 ≤  ≤ 1. Then

2 + 2 + 2 =1

0(2)2· 3  + (1 + 3)2 + 2· 2  =1 0

232+ 6 + 1



=23

33+ 32+ 1

0 =233 + 3 + 1 = 353

16. On 1:  =  ⇒  =   = 0 ⇒

 = 0   =  ⇒  =  0 ≤  ≤ 1.

On 2:  = 1 −  ⇒  = −  =  ⇒

 =   = 1 +  ⇒  =  0 ≤  ≤ 1.

Then

( + )  + ( + )  + ( + ) 

=

1( + )  + ( + )  + ( + )  +

2( + )  + ( + )  + ( + ) 

=1

0(0 + )  + ( + ) · 0  + ( + 0)  +1

0( + 1 + )(−) + (1 −  + 1 + )  + (1 −  + ) 

=1

0 2  +1

0(−2 + 2)  =

21 0+

−2+ 21

0= 1 + 1 = 2

17. (a) Along the line  = −3, the vectors of F have positive -components, so since the path goes upward, the integrand F · T is always positive. Therefore

1F· r =

1F· T  is positive.

(b) All of the (nonzero) field vectors along the circle with radius 3 are pointed in the clockwise direction, that is, opposite the direction to the path. So F · T is negative, and therefore

2F· r =

2F· T  is negative.

18. Vectors starting on 1point in roughly the same direction as 1, so the tangential component F · T is positive. Then

1F· r =

1F· T  is positive. On the other hand, no vectors starting on 2point in the same direction as 2, while some vectors point in roughly the opposite direction, so we would expect

2F· r =

2F· T  to be negative.

19. r() = 3i+ 2j, so F(r()) = (3)(2)2i− (3)2j= 7i− 6j and r0() = 32i+ 2 j. Then

F· r =1

0 F(r()) · r0()  =1

0(7· 32− 6· 2)  =1

0(39− 27)  =3

10101481

0= 10314 = 201. 20. F(r()) =

2+ (3)2

i+ (2)(−2) j + (3− 2) k = (2+ 6) i − 23j+ (3− 2) k, r0() = 2 i + 32j− 2 k. Then

F· r =2

0 F(r()) · r0()  =2

0(23+ 27− 65− 23+ 4)  =2

0(27− 65+ 4) 

=1

48− 6+ 222

0= 64 − 64 + 8 = 8 21.

F· r =1 0

sin 3 cos(−2) 4

·

32 −2 1



=1

0(32sin 3− 2 cos 2+ 4)  =

− cos 3− sin 2+1551

0=65 − cos 1 − sin 1

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 16.2 LINE INTEGRALS ¤ 641

15. Parametric equations for  are  = 1 + 3,  = ,  = 2, 0 ≤  ≤ 1. Then

2 + 2 + 2 =1

0(2)2· 3  + (1 + 3)2 + 2· 2  =1 0

232+ 6 + 1



=23

33+ 32+ 1

0 =233 + 3 + 1 = 353

16. On 1:  =  ⇒  =   = 0 ⇒

 = 0   =  ⇒  =  0 ≤  ≤ 1.

On 2:  = 1 −  ⇒  = −  =  ⇒

 =   = 1 +  ⇒  =  0 ≤  ≤ 1.

Then

( + )  + ( + )  + ( + ) 

=

1( + )  + ( + )  + ( + )  +

2( + )  + ( + )  + ( + ) 

=1

0(0 + )  + ( + ) · 0  + ( + 0)  +1

0( + 1 + )(−) + (1 −  + 1 + )  + (1 −  + ) 

=1

0 2  +1

0(−2 + 2)  =

21 0+

−2+ 21

0= 1 + 1 = 2

17. (a) Along the line  = −3, the vectors of F have positive -components, so since the path goes upward, the integrand F · T is always positive. Therefore

1F· r =

1F· T  is positive.

(b) All of the (nonzero) field vectors along the circle with radius 3 are pointed in the clockwise direction, that is, opposite the direction to the path. So F · T is negative, and therefore

2F· r =

2F· T  is negative.

18. Vectors starting on 1point in roughly the same direction as 1, so the tangential component F · T is positive. Then

1F· r =

1F· T  is positive. On the other hand, no vectors starting on 2point in the same direction as 2, while some vectors point in roughly the opposite direction, so we would expect

2F· r =

2F· T  to be negative.

19. r() = 3i+ 2j, so F(r()) = (3)(2)2i− (3)2j= 7i− 6j and r0() = 32i+ 2 j. Then

F· r =1

0 F(r()) · r0()  =1

0(7· 32− 6· 2)  =1

0(39− 27)  =3

10101481

0= 10314 = 201. 20. F(r()) =

2+ (3)2

i+ (2)(−2) j + (3− 2) k = (2+ 6) i − 23j+ (3− 2) k, r0() = 2 i + 32j− 2 k. Then

F· r =2

0 F(r()) · r0()  =2

0(23+ 27− 65− 23+ 4)  =2

0(27− 65+ 4) 

=1

48− 6+ 222

0= 64 − 64 + 8 = 8 21.

F· r =1 0

sin 3 cos(−2) 4

·

32 −2 1



=1

0(32sin 3− 2 cos 2+ 4)  =

− cos 3− sin 2+1551

0=65 − cos 1 − sin 1

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 16.2 LINE INTEGRALS ¤ 645 35. (a)  = 1

(  ) ,  = 1

(  ) ,  = 1

(  ) where  =

(  ) .

(b)  =

  = 2

0

4 sin2 + 4 cos2 + 9  = √ 132

0  = 2√ 13,

 = 1

2√ 13

2

0

2√

13 sin   = 0,  = 1 2√

13

2

0

2√

13 cos   = 0,

 = 1

2√ 13

2

0

√ 13

(3)  = 3 2

22= 3. Hence (  ) = (0 0 3).

36.  =

(2+ 2+ 2)  =2

0 (2+ 1)

(1)2+ (− sin )2+ (cos )2 =2

0 (2+ 1)√

2  =√ 28

33+ 2,

 = 1

√28

33+ 2

2

0

√2 (3+ )  = 44+ 22

8

33+ 2 = 3

22+ 1 42+ 3 ,

 = 3

2√

2 (42+ 3)

2

0

√2 cos 

(2+ 1)  = 0, and

 = 3

2√

2 (42+ 3)

2

0

√2 sin 

(2+ 1)  = 0. Hence (  ) =

3(22+ 1) 42+ 3  0 0

 .

37. From Example 3, ( ) = (1 − ),  = cos ,  = sin , and  = , 0 ≤  ≤  ⇒

=

2( )  =

0 sin2 [(1 − sin )]  = 

0(sin2 − sin3) 

=12

0(1 − cos 2)  − 

0 (1 − cos2) sin  

Let  = cos ,  = − sin  

in the second integral

= 

2 +−1

1 (1 − 2) 

=  243

=

2( )  = 

0 cos2 (1 − sin )  =2

0(1 + cos 2)  − 

0 cos2 sin  

=  223

, using the same substitution as above.

38. The wire is given as  = 2 sin ,  = 2 cos ,  = 3, 0 ≤  ≤ 2 with (  ) = . Then

 =

(2 cos )2+ (−2 sin )2+ 32 =

4(cos2 + sin2) + 9  =√ 13 and

=

(2+ 2)(  )  =2

0 (4 cos2 + 92)()√

13  =√ 13 

41

2 +14sin 2

+ 332

0

=√

13 (4 + 243) = 4√

13 (1 + 62)

=

(2+ 2)(  )  =2

0

4 sin2 + 92 ()√

13  =√ 13 

41

2 −14sin 2

+ 332

0

=√

13 (4 + 243) = 4√

13 (1 + 62)

=

(2+ 2)(  )  =2

0 (4 sin2 + 4 cos2)()√

13  = 4√ 13 2

0  = 8√ 13 

39.  =

F· r =2

0 h − sin  3 − cos i · h1 − cos  sin i 

=2

0 ( −  cos  − sin  + sin  cos  + 3 sin  − sin  cos ) 

=2

0 ( −  cos  + 2 sin )  =1

22− ( sin  + cos ) − 2 cos 2

0

integrate by parts in the second term

= 22

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

646 ¤ CHAPTER 16 VECTOR CALCULUS

40. Choosing  as the parameter, the curve  is parametrized by  = 2+ 1,  = , 0 ≤  ≤ 1. Then

 =

F· r =1 0

2+ 12

 2+1

· h2 1i  =1 0

 2

2+ 12

+ 2+1



=

1 3

2+ 13

+122+11

0 =83+1221312 =12212 +73 41. r() = h2  1 − i, 0 ≤  ≤ 1.

 =

F· r =1 0

2 − 2  − (1 − )2 1 −  − (2)2

· h2 1 −1i 

=1

0 (4 − 22+  − 1 + 2 − 2− 1 +  + 42)  =1

0 (2+ 8 − 2)  =1

33+ 42− 21 0=73 42. r() = 2 i +  j + 5 k, 0 ≤  ≤ 1. Therefore

 =

F· r =

1 0

h2  5i

(4 + 262)32 · h0 1 5i  = 

1 0

26

(4 + 262)32 = 

−(4 + 262)−121 0= 

1 2130

.

43. (a) r() = 2i+ 3j ⇒ v() = r0() = 2 i + 32j ⇒ a() = v0() = 2 i + 6 j, and force is mass times acceleration: F() =  a() = 2 i + 6 j.

(b)  =

F· r =1

0(2 i + 6 j) · (2 i + 32j)  =1

0 (42 + 1823) 

=

222+92241

0= 22+922

44. r() =  sin  i +  cos  j +  k ⇒ v() = r0() =  cos  i −  sin  j +  k ⇒ a() = v0() = − sin  i −  cos  j and F() =  a() = − sin  i −  cos  j. Thus

 =

F· r =2

0 (− sin  i −  cos  j) · ( cos  i −  sin  j +  k) 

=2

0 (−2sin  cos  + 2sin  cos )  = (2− 2)1

2sin22

0 = 12(2− 2)

45. The combined weight of the man and the paint is 185 lb, so the force exerted (equal and opposite to that exerted by gravity) is F= 185 k. To parametrize the staircase, let  = 20 cos ,  = 20 sin ,  = 906 =15, 0 ≤  ≤ 6. Then the work done is

 =

F· r =6

0 h0 0 185i ·

−20 sin  20 cos 15

 = (185)156

0  = (185)15

(6) ≈ 167 × 104ft-lb

46. This time  is a function of :  = 185 −69 = 185 −23. So let F =

185 −23 

k. To parametrize the staircase, let  = 20 cos ,  = 20 sin ,  =690 = 15, 0 ≤  ≤ 6. Therefore

 =

F· r =6

0

0 0 185 −23 

·

−20 sin  20 cos 15

 =156

0

185 −23



=15

185 −4326

0 = 90 185 −92

≈ 162 × 104ft-lb

47. (a) r() = hcos  sin i, 0 ≤  ≤ 2, and let F = h i. Then

 =

F·  r =2

0 h i · h− sin  cos i  =2

0 (− sin  +  cos )  =

 cos  +  sin 2

0

=  + 0 −  + 0 = 0 (b) Yes. F ( ) =  x = h i and

 =

F·  r =2

0 h cos   sin i · h− sin  cos i  =2

0 (− sin  cos  +  sin  cos )  =2

0 0  = 0.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

(2)

SECTION 16.2 LINE INTEGRALS ¤ 647

48. Consider the base of the fence in the -plane, centered at the origin, with the height given by  = ( ). To graph the fence, observe that the fence is highest when  = 0 (where the height is 5 m) and lowest when  = 0 (a height of 3 m). When

 = ±, the height is 4 m.

Also, the fence can be graphed using parametric equations (see Section 16.6):  = 10 cos ,  = 10 sin ,

 = 

4 + 001((10 cos )2− (10 sin )2)

= (4 + cos2 − sin2)

= (4 + cos 2), 0 ≤  ≤ 2, 0 ≤  ≤ 1.

The area of the fence is

( ) where , the base of the fence, is given by  = 10 cos ,  = 10 sin , 0 ≤  ≤ 2.

Then 

( )  =2

0

4 + 001((10 cos )2− (10 sin )2) 

(−10 sin )2+ (10 cos )2

=2

0 (4 + cos 2)√

100  = 10

4 +12sin 22

0 = 10(8) = 80m2

If we paint both sides of the fence, the total surface area to cover is 160 m2, and since 1 L of paint covers 100 m2, we require

160

100 = 16 ≈ 503 L of paint.

49. Let r() = h() () ()i and v = h1 2 3i. Then

v· r =

h1 2 3i · h0() 0() 0()i  =

[10() + 20() + 30()] 

=

1() + 2() + 3()

= [1() + 2() + 3()] − [1() + 2() + 3()]

= 1[() − ()] + 2[() − ()] + 3[() − ()]

= h1 2 3i · h() − () () − () () − ()i

= h1 2 3i · [h() () ()i − h() () ()i] = v · [r() − r()]

50. If r() = h() () ()i then

r· r =

h() () ()i · h0() 0() 0()i  =

[() 0() + () 0() + () 0()] 

=1

2[()]2+12[()]2+12[()]2

=12

[()]2+ [()]2+ [()]2

−

[()]2+ [()]2+ [()]2

=12

|r()|2− |r()|251. The work done in moving the object is

F· r =

F· T . We can approximate this integral by dividing  into 7segments of equal length ∆ = 2 and approximating F · T, that is, the tangential component of force, at a point ( )on each segment. Since  is composed of straight line segments, F · T is the scalar projection of each force vector onto .

If we choose ( )to be the point on the segment closest to the origin, then the work done is

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 16.2 LINE INTEGRALS ¤ 647

48. Consider the base of the fence in the -plane, centered at the origin, with the height given by  = ( ). To graph the fence, observe that the fence is highest when  = 0 (where the height is 5 m) and lowest when  = 0 (a height of 3 m). When

 = ±, the height is 4 m.

Also, the fence can be graphed using parametric equations (see Section 16.6):  = 10 cos ,  = 10 sin ,

 = 

4 + 001((10 cos )2− (10 sin )2)

= (4 + cos2 − sin2)

= (4 + cos 2), 0 ≤  ≤ 2, 0 ≤  ≤ 1.

The area of the fence is

( ) where , the base of the fence, is given by  = 10 cos ,  = 10 sin , 0 ≤  ≤ 2.

Then 

( )  =2

0

4 + 001((10 cos )2− (10 sin )2) 

(−10 sin )2+ (10 cos )2

=2

0 (4 + cos 2)√

100  = 10

4 +12sin 22

0 = 10(8) = 80m2

If we paint both sides of the fence, the total surface area to cover is 160 m2, and since 1 L of paint covers 100 m2, we require

160

100 = 16 ≈ 503 L of paint.

49. Let r() = h() () ()i and v = h1 2 3i. Then

v· r =

h1 2 3i · h0() 0() 0()i  =

[10() + 20() + 30()] 

=

1() + 2() + 3()

= [1() + 2() + 3()] − [1() + 2() + 3()]

= 1[() − ()] + 2[() − ()] + 3[() − ()]

= h1 2 3i · h() − () () − () () − ()i

= h1 2 3i · [h() () ()i − h() () ()i] = v · [r() − r()]

50. If r() = h() () ()i then

r· r =

h() () ()i · h0() 0() 0()i  =

[() 0() + () 0() + () 0()] 

=1

2[()]2+12[()]2+12[()]2

=12

[()]2+ [()]2+ [()]2

−

[()]2+ [()]2+ [()]2

=12

|r()|2− |r()|251. The work done in moving the object is

F· r =

F· T . We can approximate this integral by dividing  into 7segments of equal length ∆ = 2 and approximating F · T, that is, the tangential component of force, at a point ( )on each segment. Since  is composed of straight line segments, F · T is the scalar projection of each force vector onto .

If we choose ( )to be the point on the segment closest to the origin, then the work done is

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

參考文獻

相關文件

From the graph, it appears that F is conservative, since around all closed paths, the number and size of the field vectors pointing in directions similar to that of the path seem to

For any closed path we draw in the field, it appears that some vectors on the curve point in approximately the same direction as the curve and a similar number point in roughly

As in Example 4, we place the origin at the southwest corner of

From the graph, it appears that F is conservative, since around all closed paths, the number and size of the field vectors pointing in directions similar to that of the path seem to

With the help of the pictures and the words below, write a journal entry about what happened.. Write at least

1) The pressure exerted by a column of liquid is equal to the product of the height of the column times the gravitational constant times the density of the liquid, P = ghd.. 31)

The molal-freezing-point-depression constant (Kf) for ethanol is 1.99 °C/m. The density of the resulting solution is 0.974 g/mL.. 21) Which one of the following graphs shows the

Murphy.Woodward.Stoltzfus.. 17) The pressure exerted by a column of liquid is equal to the product of the height of the column times the gravitational constant times the density of