• 沒有找到結果。

(t, t2), a ÑL<ÝÉ¡b, ½- ?´A ? (i) lim t→0f (ϕ(t

N/A
N/A
Protected

Academic year: 2022

Share "(t, t2), a ÑL<ÝÉ¡b, ½- ?´A ? (i) lim t→0f (ϕ(t"

Copied!
17
0
0

加載中.... (立即查看全文)

全文

(1)

92çB$ø`çü5(-ç‚)

Ch11.Ch14 ¡b. ”è™

1. [a] #8ƒb f (x, y) =

( 2x2y

x4+y2 J (x, y) 6= (0, 0) 0 J (x, y) = (0, 0)

I ϕ(t) = (t, at), ψ(t) = (t, t2), a ÑL<ÝÉ¡b, ½-

?´A ? (i) lim

t→0f (ϕ(t)) = lim

t→0f (ψ(t)), (ii) f Ê (0, 0) ©/. sol.

(i)

limt→0f (ϕ(t)) = lim

t→0

2t2·at

t4+a2t2 = lim

t→0 2at

a2+t2 = 0 limt→0f (ψ(t)) = lim

t→0 2t2·t2

t4+t4 = lim

t→01 = 1 limt→0f (ϕ(t)) 6= lim

t→0f (ψ(t))

(ii) J f Ê (0, 0) ©/, lim

(x,y)→(0,0

f (x, y) = f (0, 0),

Oâ¤, ú‡H ϕ, ψ

limt→0f (ϕ(t)) = 0 = f (0, 0) = lim

t→0f (ψ(t)) = 1 =⇒

0 = 1, 8e ] f Ê (0, 0) .©/

[b] #8ƒb f (x, y) =

( |x|

y2e

|x|

y2 J y 6= 0

0 J y = 0

½”Ì lim

(x,y)→(0,0)

f (x, y) æÊ´?

(2)

sol.

f (x, y) =

( |x|

y2e

|x|

y2 J y 6= 0

0 J y = 0

5? ϕ(t) = (t2, t), lim

t→0f (ϕ(t)) = lim

t→0f (t2, t) = limt→0

|t2| t2 e

|t2|

t2 = lim

t→0e−1 = e−1.

5? ψ(t) = (t3, t), f (ψ(t)) = lim

t→0

|t3| t2 e

|t3|

t2 ,

Y t > 0, t 6= 0 C t < 0, lim

t→0f (ψ(t)) = lim

t→0±tet = 0.

, lim

t→0f (ϕ(t)) 6= lim

t→0f (ψ(t)), ] lim

(x,y)→(0,0)

f (x, y).

æÊ

2. ø”õÊÆ£ì( (circular helix) −→r (t) «,

→r (t) = (a cos ωt, a sin ωt, bωt) [a] ½¤õ5§0 (speed) u´Ñb?

sol.

velocity vector= d−r (t)dt = (−aω sin ωt, aω cos ωt, bω)

|−→r | = √

a2ω2sin2ωt + a2ω2cos2ωt + b2ω2 speed= |−→r | = √

a2 + b2ω, constant.

[b] °¤”õ5§²¾ (velocity vector) D z W5>i sol.−

→z 5ÀP²¾ −→

k = (0, 0, 1), −→r D −→

k íHiÑ θ,

cos θ = r ·

k

|−r ||

k | =

(a2+b2)12ω

= b

(a2+b2)12

,

(3)

θ = cos−1



b (a2+b2)12



, ø_b

[c] ‚à (b) C¦( −→r (t) ,íù_Ôyõ, j-½

æ: ²¾ƒb(à−→r (t))?´À‰bõbMƒbf : [a, b] → R 5 Mean Value Theorem ?( f x5FbíGß4

) sol.

J −→r (t) = (a cos ωt, a sin ωt, bωt)ÑW, ¦ t1 = 0, t2 =

ω ,

→r (t1) = (a, 0, 0), −→r (t2) = (a, 0, 2πb), ⤠−→r (t2) −

→r (t1) = (0, 0, 2πb), ¤²¾5j²uòk x, y (²

,, Jb > 0)

J −→r ¥_²¾ƒbé°À‰bõbMƒb5 Mean Value Theorem, † ξ k t1D t2 5ÈU) −→r (t2) − −→r (t1) =

(t2−t1)−→r 0(ξ), ¹(0, 0, 2πb) = ω (−aω sin ωξ, aω cos ωξ, bω),

ku sin ωξ = 0, cos ωξ = 0, ¤Ñ.ª?59 ] (c) 5

u´ìí

[d] °Æ£ì( (ÊLSøõ) í0 sol.

”õ5 unit velocity vector= −→

T = |−vv |, JsÑÆ£(5 parameter,

(4)

→T = d−→r dt /ds

dt = d−→r ds

= d

ds(a cos ωt, a sin ωt, bωt)

= dt ds · d

dt(−aω sin ωt, aω cos ωt, bω)

b²ìdt

ds, 1 = (dt

ds)2 · (a2ω2sin2ωt + a2ω2cos2ωt + b2ω2)

= (dt

ds)2 · (a2 + b22

dt

ds = 1

a2+b2ω, â¤−→

T = 1

a2+b2(−a sin ωt, a cos ωt, bω) d−→

T

ds = 1

√a2 + b2 dds(−a sin ωt, a cos ωt, bω)

= 1

√a2 + b2 dtdsdtd (−a sin ωt, a cos ωt, bω)

0K =

d T ds

= 1

a2+b2

dt

ds

·√

a2ω2cos2ωt + a2ω2sin2ωt

B¤Æ£ì($ÊLSøõ50Ñ a

a2+b2. 3. Let r(t) = (et − t, 2√

6e2t,√

3t), −1 ≤ t ≤ 1, [a] Find the length of the curve;

sol.

(5)

r0(t) = (et − 1,√

6e2t,√ 3),

||r0(t)|| = ((et − 1)2 + (√

6e2t)2 + (√

3)2)12 = (e2t + 4et + 4)12 = et + 2.

L = R1

−1||r0(t)||dt = R 1

−1(ey + 2)dt = e − e−1 + 4.

[b] Find the curvature of r(t) at t = 0;

sol.

r00(t) = (et, 12

6e2t, 0), r0(0) = (0,√

6,√

3), r00(0) = (1,

6

2 , 0), r0(0)×r00(0) = (−3

2 2 ,√

3, −√ 6).

So k(0) = ||r0(0)×r||r0(0)||00(0)||3 = 12.

4. Let r(t) = (t2, − sin t + t cos t, cos t + t sin t), t > 0, find an equation of the osculating plane of the curve r(t) at the point (π2, −π, −1).

sol.

r0(t) = (2t, −t sin t, t cos t),

||r0(t)|| = ((2t)2+ (−t sin t)2+ (t cos t)2)12 = √

5|t| =

√5t (by t > 0).

T(t) = ||rr00(t)(t)|| = 1

5(2, − sin t, cos t), T0(t) = 1

5(0, − cos t, − sin t), ||T0(t)|| = 1

5, N(t) = ||TT00(t)(t)|| = (0, − cos t, − sin t),

B(t) = T(t) × N(t) = 1

5(1, 2 sin t, −2 cos t).

So the osculating plane of the curve r(t) at the point (π2, −π, −1) has normal vector B(π) = 1

5(1,0,2), so

(6)

an equation is 1(x − π2) + 0(y + π) + 2(z + 1) = 0 or x + 2z = π2 − 2.

5. Let f (x, y, z) =

( xy+yz3

x2+z6 if (x, y, z) 6= (0, 0, 0)

0 if (x, y, z) = (0, 0, 0) , de- termine the set of points at which f is continuous.

sol.

The function f (x, y, z) is continuous for (x, y, z) 6=

(0, 0, 0) since it is equal a rational function there.

For (x, y, z) → (0, 0, 0) along curve r(t) = (kt3, kt3, t), we see that f (x, y, z) = f (kt3, kt3, t) = (kt3)2+kt3t3

(kt3)2+t6 =

(k2+k) k2+1 .

So f (x, y, z) → (k2+k)

k2+1 as (x, y, z) → (0, 0, 0) along r(t) = (kt3, kt3, t).

Therefore, different path leads to different limit val- ues, hence the limit of f (x, y, z) at (0, 0, 0) dose not exist, so f (x, y, z) is not continuous at (0, 0, 0).

Ch15 Rûb

6. 163 (x3+y2)+xyz2+8z = 0. °ÊÞ, (−1, −1, 0)øõ

5 zx, zy, zxx, zxy £¬¤õ5~Þ(CÉ°zx, zxx, zxy£

~Þ) sol.

zx:

(7)

16x2 + yz2 + 2xyzzx + 8zx = 0 16 + 8zx = 0,∴ zx = −2

zy:

16

3 2y + xz2 + 2xyzzy + 8zy = 0

32

3 = 8zy ∴ zy = 43

~Þ:

p(x + 1) + q(y + 1) + (−1) · z = 0

−2(x + 1) + 43(y + 1) − z = 0 zxx :

32x + 2yzzx + 2yzzx + 2xyzx2 + 2xyzzxx+ 8zxx = 0 32x + 2xyzx2 + 8zxx = 0

−32 + 2(4) + 8zxx = 0

−24 + 8zxx = 0

∴ zxx = 3 zxy:

z2 + 2yzzy + 2xzzx + 2xyzyzx + 2xyzzxy + 8xy = 0 2zyzx + 8zxy = 0

∴ zxy = −z4xzy = −14(−2)(43) = 23.

7. ° zx, zy, ~Þ, (−109 , −1110) FÊ5z5,lM

sol.

z = 0 + −2(0.1) + 43(−0.1)

= −0.2 − 304

= −102304 = −1030 = −13.

8. Find the absolute maximum and minimum values of

(8)

f (x, y) = 4x + 6y − x2 − y2 in x2 + y2 ≤ 1.

sol.

At a critical point, fx = 4 − 2x = 0, fy = 6 − 2y = 0 =⇒ x = 2, y = 3. So there are no critical points in x2+y2 < 1. Need only look at boundary x2+y2 = 1.

method 1

Use x = cos θ, y = sin θ g(θ) = 4 cos θ + 6 sin θ − 1

g0(θ) = −4 sin θ + 6 cos θ = 0 if tan θ = 32

=⇒ sec2θ = 1 + tan2θ = 1 + 94 = 134

=⇒ cos2θ = 134 , sin2θ = 1 − cos2θ = 139 . So 2 possibilities, (2

13, 3

13),(−2

13, −3

13). The first gives

26

13 − 1 = 2√

13 − 1 ←− maximum.

The second gives −2√

13 − 1 ←− minimum.

method 2.

Lagrange multipliers:

4 − 2x = 2λx (1)

6 − 2y = 2λy (2)

x2 + y2 = 1 (3)

(1),(2)=⇒ 2(1 + λ)x = 4, 2(1 + λ)y = 6 =⇒

3(1 + λ)x = 2(1 + λ)y =⇒ x = 23y. Then (3)=⇒

4

9y2 + y2 = 1 =⇒ y2 = 139 =⇒ y = ±3

13. So get (2

13, 3

13) or (−2

13, −3

13). Finish as in method 1.

(9)

9. Find the maximum value of f (x, y, z) = xy + xz + yz subject to the constraints x ≥ 0, y ≥ 0, z ≥ 0 and x + y + z = 1.

sol.

If the maximum occurs in the interior of the set, then the equation y + z = λ, x + z = λ, x + y = λ, x + y + z = 1 must hold for some λ. Then

y + z = x + z =⇒ x = y x + z = x + y =⇒ y = z So x = y = z = 13 =⇒ f (x, y, z) = 39 = 13.

The other possibility is that the maximum occurs where one of x, y, z is 0.

Suppose x = 0. Then y + z = 1 and f (0, y, z) = yz = y(1 − y). The maximum of this in 0 ≤ y ≤ 1 is 14. Similarly, if y = 0 or z = 0 we get a maximum of 14. Hence the maximum value must be 13.

10. The plane 2x + y + z = 10 intersects the paraboloid z = x2 + y2 in an ellipse. Find the highest point on the ellipse.

sol.

We want to maximize f (x, y, z) = z subject to x2 + y2 − z = 0, 2x + y + z − 10 = 0.

(10)

By the method of Lagrange multipliers, we get

0 = λ2x + 2µ (1)

0 = λ2y + µ (2)

1 = −λ + µ (3)

x2 + y2 − z = 0 (4)

2x + y + z − 10 = 0 (5) (1),(2)=⇒ λx = 2λy =⇒ λ = 0 or x = 2y.

If λ = 0, then (1) =⇒ µ = 0 which contradicts (3).

So x = 2y. Then (4)=⇒ z = x2 + y2 = 5y2.

(5)=⇒ 4y + y + 5y2− 10 = 0 =⇒ y2+ y − 2 = 0 =⇒

(y + 2)(y − 1) = 0 =⇒ y = −2, 1.

y = −2 =⇒ (x, y, z) = (−4, −2, 20) ←− highest point.

y = 1 =⇒ (x, y, z) = (2, 1, 5) ←− lowest point.

11. Show that the ellipsoid 3x2 + 2y2 + z2 = 9 and the sphere x2 + y2 + z2 − 8x − 6y − 8z + 24 = 0 are tangent to each other at he point (1, 1, 2).

sol.

Let f (x, y) = 3x2 + 2y2 + z2 − 9 and g(x) = 3x2 + 2y2+ z2− 9. Then f (1, 1, 2) = g(1, 1, 2) = 0 and the ellipsoid and the sphere are the level surfaces of f and g. Thus ∇f (1, 1, 2) and ∇g(1, 1, 2) are orthogonal to the ellipsoid and the sphere (1, 1, 2).

∇f (x, y, z) = h6x, 4y, 2zi and ∇g(x, y, z) = h2x −

(11)

8, 2y − 6, 2z − 8i. Hence ∇f (1, 1, 2) = h6, 4, 4i is parallel ∇g(1, 1, 2) = h−6, −4, −4i. This implies that the ellipsoid 3x2 + 2y2 + z2 = 9 and the sphere x2+ y2+ z2 − 8x − 6y − 8z + 24 = 0 are tengent to each other at he point (1, 1, 2).

12. If f (x, y) = 0 define y as a function of x, show that d2y

dx2 = fxxfy2 − 2fxyfxfy + fyyfx2 fy3

sol.

Differentiate f (x, y) = 0 w.r.t x. We have fx + fydy

dx = 0 (1)

Hence if fy 6= 0, dydx = −ff x

y . Differentiate (1) w.r.t x.

We have

fxx + fxydy

dx + fyxdy

dx + fyy(dy

dx)2 + fyd2y dx2 = 0 We assume that fxy and fyx are both continuous, and hence fxy = fyx. Also, from the equation (1), we have

fxx + fxy−fx

fy + fyx−fx

fy + fyy(−fx

fy )2 + fyd2y dx2 = 0 Thus

d2y

dx2 = fxxfy2 − 2fxyfxfy + fyyfx2 fy3

(12)

13. Let f (x, y) = x2(x2+ y2)12esin(x2y) if (x, y) 6= (0, 0) and f (0, 0) = 0.

(1) Let −→u = hcos θ, sin θi and find Duf (0, 0).

(2) Prove that f is continuous at (0, 0).

sol.

Duf (0, 0) = lim

h→0

f (h cos θ, h sin θ) − f (0, 0) h

= lim

h→0

h(cos θ)2esin(h3cos2θ sin θ)

h = (cos θ)2

|x2(x2 + y2)12esin(x2y)| ≤ |x|e1. Since lim

(x,y)→(0,0)

|x| = 0, it follows that lim

(x,y)→(0,0)

f (x, y) = 0 = f (0, 0).

Ch16 ½ }

14. D = {(x, y)|x2+y2 ≤ 4}, RR

D

p4 − x2 − y2dA.

sol.

(13)

I u = 4 − r2

Ÿ =

Z 0

Z 2 0

p4 − r2rdrdθ

= 1 2

Z 0

Z 4 0

√ududθ

= 1 2

Z π2

0

2 3u32

4

0

= 8 3

Z 0

dθ = 16 3 π 15. °R1

0

R1

x cos(y2)dydx.

sol.

‰² }ßå,

Ÿ = Z 1

0

Z 4 0

cos y2dxdy

= Z 1

0

y cos y2dy

= sin y2 2

1

0

= sin 1 2 16. °R1

0

R1 0

xy

x2+y2+1dydx.

sol.

(14)

I u = x2 + y2 + 1

Ÿ = Z 1

0

1 2x

Z 2+x2 1+x2

√du udx

= Z 1

0

x 2

2 + x2dx − Z 1

0

x 2

1 + x2dx

= 1

3(2 + x2)32

1

0

− 1

3(1 + x2)32

1

0

= 1 3[3√

3 − 2√

2 − 2√

2 + 1]

= 1 3[3√

3 − 4√

2 + 1]

17. R1 0

R1

y yex2

x3 dxdy sol.

(15)

x = √

y =⇒ y = x2

Ÿ = Z 1

0

Z x2 0

yex2

x3 dydx

= Z 1

0

x4ex2 2x3 dx

= 1 2

Z 1 0

xex2dx

= 1 4ex2

1

0

= 1

4(e − 1) 18. (a) RR

D 1

(x2+y2)n2dA, n Ñcb. D : {(x, y), a ≤ px2 + y2 ≤ b}

sol.

Ÿ =

Z 0

Z b a

1

rnrdrdθ

= 2π Z b

a

1 rn−1dr (b) ç a −→ 0+, nMU }í”ÌæÊ

sol.

(ÿ )

(16)

19. t°Þ z = p

x2 + y2 D6Þ x2 + y2 = 2x £ xy 

ÞFˇ5ñ 

sol.

(x − 1)2 + y2 = 1, r = 2 cos θ

Ÿ = Z π2

π2

Z 2 cos θ 0

rrdrdθ

= 2 Z π2

0

Z 2 cos θ 0

r2drdθ

20. ρ(x, y) = xy2, D = {(r, θ), 0 ≤ r ≤ a, 0 ≤ θ ≤ π2},

Dí”-

sol.

(ÿ )

21. Consider the iterated integralR8 0

R 2 y13

√1 + x4dx dy.

Sketch the region of integration and then evaluate it by reversing the order of integration.

sol.

R2

0 dxRx3

0 dy√

1 + x4 = R2

0 x3

1 + x4dx = 23 · 14(1 + x4)32

2 0

=

1

6{1732 − 1}

22. Consider the iterated integralR2 0

R 4

y2 y sin(x2)dx dy.

Sketch the region of integration and then evaluate it by reversing the order of integration.

sol.

(17)

R4 0 dxR

x

0 dyy sin(x2) = R4 0

x

2 sin(x2)dx = 1212(− cos(x2))|40 =

1

4(1 − cos 16)

23. By making an appropriate change of variables to evaluate the integral RR

R

dA

1+9x2+9y2, where R is the region bounded by the ellipse 9x2 + 9y2 = 4.

sol.

x = r cos θ, y = r sin θ R

0 dθR 23

0 dr r

1+9r2 = 2πln(1+9r18 2)

2 3

0 = π9 ln 5

參考文獻

相關文件

1、曾擔任以國家、重要城市為名,至少以二個版面以上刊登國際 新聞,且發行對象以全國或全球讀者為目標之平面媒體或通訊 社(例如:《美國新聞與世界報導》(U.S. News

MULTIVARIATE ANALYSIS Degree Frequencies in the Minimal Spanning Tree and..

Determine how much money the company should spend on newspaper advertising and on television advertising per month to maximize its monthly

External evidence, as discussed above, presents us with two main candidates for translatorship (or authorship 5 ) of the Ekottarik gama: Zhu Fonian, and Sa ghadeva. 6 In

[r]

(a) (4%) Show that the area of an ellipse with the semi-major axis of length a and the semi-minor axis of length b is abπ.. The door is opened or closed by rotating OB about

A cubic function is a polynomial of degree 3.. (a) Show that a cubic function can have two, one, or no critical

Let  be the length of the north and south walls,  the length of the east and west walls, and  the height of the building.. All