• 沒有找到結果。

1. (10%) Bᵫ r(t) = (t + sin t cos t)i + (sin

N/A
N/A
Protected

Academic year: 2022

Share "1. (10%) Bᵫ r(t) = (t + sin t cos t)i + (sin"

Copied!
9
0
0

加載中.... (立即查看全文)

全文

(1)

1. (10%) 令曲線由 r(t) = (t + sin t cos t)i + (sin2t)j + (2 cos t)k, t ∈ R, 所定義。

(a) 求曲線上的曲率 κ 。

(b) 求 κ 發生最大值之點, 以及在這些點的單位切向量 (unit tangent) T 及單位主法 向量 (principal unit normal) N。

Sol.

r0(t) = (1 + cos 2t)i + sin 2tj + (−2 sin t)k ⇒ T = e1 = r0(t)

|r0(t)| = 1 2r0(t).

Since

r”(t) = (−2 sin 2t)i + (2 cos 2t)j + (−2 cos t)k,

n = r”(t)− < r”(t), e1 > e1 = (−2 sin 2t)i + (2 cos 2t)j + (−2 cos t)k and

|n| = 2√

cos2t + 1, it follows that

N = 1

√cos2t + 1((− sin 2t)i + (cos 2t)j + (− cos t)k) . We have

κ = < e01, N >

|r0(t)| = 1 2

√cos2t + 1.

Therefore,when t = mπ, m ∈ Z, κ has mamimum. Moreover,T = (1, 0, 0), N =

√1

2(0, 1, −1)(n is even) ,N = 1

2(0, 1, 1)(n is odd).

(2)

2. (18%) 判斷以下級數是絕對收斂 (absolute convergence)、 條件收斂 (conditional con- vergence) 或發散 (divergence)?

(a)

X

n=1

(−1)n

√n + 1 +√ n (b)

X

n=1

(−1)n

√n + 1 −√ n (c)

X

n=1

(−1)n

√n3+ 1 +√ n3 Sol.

(a)(1) lim

n→∞

1 n

1 n+1+

n

= 2. Since P∞ n=1

√1

n is divergence, P∞ n=1

√ 1 n+1+√

n is di- vergence.

(2) Since n+1+1 n is decreasing and lim

x→∞

√ 1 n+1+√

n = 0, P∞ n=1

(−1)n

√n+1+√

n is conver- gence.

Hence P∞ n=1

(−1)n

√n+1+√

n is conditional convergence.

(b) Since n+1−1 n is increasing, P∞ n=1

(−1)n

√n3+1+√

n3 is divergence.

(c) lim

n→∞

1 n3

1 n3+1+

n3

= 2. Since P∞ n=1

√1

n3 is convergence, P∞ n=1

√ 1

n3+1+√

n3 is con- vergence.

Hence P∞ n=1

(−1)n

√ n3+1+√

n3 is absolutely convergence.

(3)

3. (10%)

(a) 將 f (x) = tan−1x 表成在 x = 0 的冪級數 (包括一般項及收斂半徑)。

(b) 估計積分 ˆ 1

4

0

tan−1x

√x dx 之值, 使其誤差 < 1

104(須明確解釋你的估計值之誤差確 實滿足題目中的要求)。

Sol.

Sol: (a) tan−1x = ˆ x

0

1

1 + t2 dt = ˆ x

0

X

n=0

(−t2)n dt =

X

n=0

(−1)n ˆ x

0

t2n dt

=

X

n=0

(−1)n 2n + 1x2n+1

Let an = (−1)n

2n + 1, by Ratio Test, lim

n→∞|an+1

an | = 1 ⇒ R = 1

(b) tan−1x

√x = x1/2−1

3x5/2+1

5x9/2−1

7x13/2+ · · · ˆ 1

4

0

tan−1x

√x dx = [ 2

3x3/2− 2

21x7/2+ 2

55x11/2− 2

105x15/2+ · · · ]1/4

0

= 23(12)3212(12)7+552 (12)111052 (12)15+ · · · ( ≡ u1− u2+ u3− u4+ · · · )

552 (12)11 < 10−4 and un≥ 0 , un& 0 ∀n By The Alternating Series Estimation Theorem, ˆ 1

4

0

tan−1x

√x dx ≈ 2 3(1

2)3− 2 21(1

2)7 = 37

448 , |Error| ≤ 10−4

(4)

4. (10%) 考慮冪級數

X

n=2

1 n ln nxn 。 (a) 求收斂半徑 r 。

(b) 討論在 x = r 及 x = −r 的收斂性。

Sol.

(a)

由比率審斂法 ,

n→∞lim |

1

(n+1) ln(n+1)xn+1

1

(n) ln(n)xn | = |x| < 1 收斂半徑 r =1 .

(b) r=1,

X

n=2

1 n(ln n) 收斂性與

ˆ ∞ 2

1

x(ln x)dx = ln(ln(n))|2 → ∞ 一致 , 由積分審斂法 , 級數發散 .

r=-1,

(5)

5. (10%) 令 z = f (x, y) 為一連續可微函數, 利用代換 x = r cos θ, y = r sin θ 可得一個 恆等關係

(∂z

∂x)2+ (∂z

∂y)2 = A(r, θ)(∂z

∂r)2+ B(r, θ)(∂z

∂θ)2 。 試求 A(r, θ) 及 B(r, θ) 。

Sol.

x = r cos θ, y = r sin θ z = f (x, y)

∂z

∂r = ∂z∂x∂x∂r + ∂z∂y∂y∂r = ∂z∂xcos θ + ∂z∂ysin θ

∂z

∂θ = ∂z∂x∂x∂θ + ∂z∂y∂y∂θ = ∂z∂x(−r sin θ) + ∂z∂y(r cos θ) 左右取平方

(∂z∂r)2 = (∂z∂xcos θ + ∂z∂ysin θ)2. . . [1]

(∂z∂θ)2 = (∂z∂x(−r sin θ) + ∂z∂y(r cos θ))2. . . [2]

⇒ r2[1] + [2] 左右相加

⇒ r2(∂z∂r)2+ (∂z∂θ) = r2((∂z∂x)2+ (∂z∂y)2)

⇒ (∂z∂x)2+ (∂z∂y)2 = (∂z∂r)2+ (r12)(∂z∂θ)

⇒ A(r, θ) = 1, B(r, θ) = r12 z

(6)

6. (10%) 令 z = yex+ cosy

x, 求該曲面上之點 (x, y, z) = (1,π2,2 ) 的切平面及法線方程 式。

(7)

7. (10%) 設函數 z = f (x, y) 在 (x, y, z) = (π, π, π) 的附近滿足方程式 sin(x + y) + sin(y + z) + sin(z + x) = 0 。

求函數 z = f (x, y) 在 (π, π) 點, 沿著哪個方向的方向導數 (directional derivative) 最 大? 最大值為何?

(8)

8. (10%) 求函數 z = x3− 2x + xy2+ y + 1 的所有臨界點 (critical point), 並判斷它是 極大、 極小或是鞍點 (saddle point)。

Sol.

∂z

∂x = 3x2− 2 + y2 = 0

∂z

∂y = 2xy + 1 = 0

(1)

⇒ y = −2x1 ⇒ 3x2+4x12 = 2 ⇒ 12x4 − 8x2+ 1 = 0 ⇒ (6x2− 1)(2x2− 1) = 0

⇒ x = ±1

6, ±1

2 ⇒ (x, y) = ±(1

6, −

√6

2 ), ±(1

2, −1

2) are critical points zxx = 6x, zyy = 2x, zxy = 2y ⇒ D = zxxzyy− zxy2 = 12x2− 4y2

At ±(1

6, −

√6

2 ) ⇒ D = 12 · 16 − 4 ·64 = 2 − 6 = −4 < 0 are saddle points At (1

2, −1

2) ⇒ D = 12 ·12− 4 ·24 = 6 − 2 = 4 > 0, zxx = 6

2 > 0 is local minimum point

At −(1

2, −1

2) ⇒ D = 12 · 12 − 4 · 24 = 6 − 2 = 4 > 0, zxx = −6

2 < 0 is local maximum point

(9)

9. (12%) 平面 x + y +√

2z = 0 與橢球面 (ellipsoid) x2 4 + y2

4 +z2

2 = 1 相交成一橢圓。

(a) 求橢圓上之點與原點的最長距離及最短距離。

(b) 求橢圓面積。

Sol.

Let f (x, y, z) = x2+ y2+ z2 g(x, y, z) = x + y +√

2z h(x, y, z) = x2

4 +y2 4 +z2

2 − 1 Then solve the equations









5f = λ 5 g + µ 5 h −(1)

g = 0 −(2)

h = 0 −(3)

¿From (1), we have









2x = λ + µx

2 −(1.1) 2y = λ + µy

2 −(1.2) 2z = λ + µz −(1.3)









(4 − µ)x = λ (4 − µ)y = λ (2 − µ)z = λ If µ = 4, λ = 0, then z = 0 ⇒ x + y = 0 (∵ g = 0)

substitute y, z with −x, 0 in (3), we have (x, y, z) = ±(√ 2, −√

2, 0) distance =√

4 = 2

If µ 6= 4, then x = y = 4−µλ ⇒ z = −√

2x (∵ g = 0) substitute y, z with x, −√

2x in (3), we have (x, y, z) = ±(

r2 3,

r2 3, −

r4 3) distance =

r8 3

So the longest distance = 2, and the shortest distance = r8

3 –(4)

(2) Since the center of the ellipse is at O(0, 0, 0), the semimajor axis = 2, and the semiminor axis =

r8 3 r8

參考文獻

相關文件

[r]

Find the absolute maximum and minimum values of... Finish as in

[r]

You may either evaluate the line integral directly, or apply Stokes’ theorem.. For the latter approach, use the relation sin 2t = 2 sin t cos t to find a surface on which the curve

[r]

However the non-linear equation (27) has also some non-perturbative solutions for finite values of x. depending upon the initial conditions) are poles.. (31) One

[r]

We compare the results of analytical and numerical studies of lattice 2D quantum gravity, where the internal quantum metric is described by random (dynamical)