• 沒有找到結果。

Non-Abelian vortex in lattice gauge theory

N/A
N/A
Protected

Academic year: 2022

Share "Non-Abelian vortex in lattice gauge theory"

Copied!
37
0
0

加載中.... (立即查看全文)

全文

(1)

Non-Abelian vortex in lattice gauge theory

Arata Yamamoto (U. Tokyo)

AY, PTEP 2018, 103B03 (2018)

(2)

condensed matter QCD

superconductors neutron stars

Introduction

https://en.wikipedia.org/wiki/Magnetar Wells, Pan, Wang, Fedoseev, Hilgenkamp (2015)

(3)

Introduction

condensed matter QCD

SU(3)C-F×U(1)/Z3 color-flavor locking condensation

U(1)

Cooper pair of electrons

“diquark”

Cooper pair of quarks

e e q q q q q q

(4)

Introduction

condensed matter QCD

Abelian vortex non-Abelian vortex

(5)

Introduction

condensed matter QCD

Abelian vortex non-Abelian vortex

e.g.

(6)

semi-classical level full-quantum level

mean-field analysis lattice gauge theory

http://jcahpc.jp/pr/pr-20171115.html

Introduction

(7)

Setup

(8)

discretize Setup

(9)

discretize

Monte Carlo Setup

(10)

Setup

non-Abelian Higgs model

:SU(3)F×SU(3)C×U(1) scalar field :dynamical SU(3)C gauge field

:external U(1) gauge field

(11)

Setup

non-Abelian Higgs model

:SU(3)F×SU(3)C×U(1) scalar field :dynamical SU(3)C gauge field

:external U(1) gauge field

SU(3)C field strength

SU(3)C×U(1) covariant derivative

scalar field potential

(12)

Setup

non-Abelian Higgs model

:anti-triplet diquarks :dynamical gluons

:external magnetic field in neutron stars

SU(3)C×U(1) covariant derivative

scalar field potential SU(3)C field strength

(13)

non-Abelian vortex condensate

color-flavor locking

magnetic field

Phase structure

(14)

Phase structure

(15)

Phase structure

U(1)

condensate

?

gauge dependent

(16)

Phase structure

condensate

U(1)

(17)

Phase structure

condensate

U(1)

(18)

Phase structure

condensate

U(1)

condensed &

deconfined phase

(19)

Phase structure

U(1)

(20)

Phase structure

color-flavor locking

SU(3)C-F

flavor color

U(1)

(21)

Phase structure

color-flavor locking

SU(3)C-F U(1)

(22)

Phase structure

color-flavor locking

SU(3)C-F U(1)

off-diagonal / diagonal

(23)

Phase structure

color-flavor locking

SU(3)C-F U(1)

color-flavor locked phase

off-diagonal / diagonal

(24)

non-Abelian vortex condensate

color-flavor locking

magnetic field Non-Abelian vortex

(25)

Non-Abelian vortex

? phase variable

gauge dependent

(26)

Non-Abelian vortex

phase variable Alford, Baym, Fukushima, Hatsuda, Tachibana (2018)

(27)

Non-Abelian vortex phase variable

vortex number density magnetic field

q

Alford, Baym, Fukushima, Hatsuda, Tachibana (2018)

(28)

Non-Abelian vortex

vortex number density condensate

(29)

Non-Abelian vortex

vortex number density condensate

(30)

Monte Carlo

Non-Abelian vortex

Q = 0

Q =1/3

(31)

Non-Abelian vortex

(32)

Non-Abelian vortex

(33)

Non-Abelian vortex

(34)

Non-Abelian vortex

(35)

Non-Abelian vortex

(36)

Non-Abelian vortex

vortex-vortex interaction is repulsive

decay

one Abelian vortex three non-Abelian vortices

Nakano, Nitta, Matsuura (2008) Alford, Mallavarapu, Vachaspati, Windisch (2016)

cf. mean-field analysis

(37)

Summary

 used gauge-invariant operators

 obtained color-flavor locked phase

 obtained vortex distributions

 ultimate goal: lattice QCD at high density I studied non-Abelian vortices in lattice gauge theory.

參考文獻

相關文件

another direction of world volume appears and resulting theory becomes (1+5)D Moreover, in this case, we can read the string coupling from the gauge field and this enables us to

7 we define the critical exponents characterizing the singular behaviour of the parti- tion function and the susceptibilities of the order parameters as

● moduli matrix ・・・ torus action around the fixed points. vortex

• Understand Membrane Instantons from Matrix Model Terminology. Thank You For

Complete gauge invariant decomposition of the nucleon spin now available in QCD, even at the density level. OAM—Holy grail in

(Only diagonal YN/YY forces in SU(3) irrep used).. • Baryon forces: Bridge

• LQCD calculation of the neutron EDM for 2+1 flavors ,→ simulation at various pion masses & lattice volumes. ,→ working with an imaginary θ [th’y assumed to be analytic at θ

Define instead the imaginary.. potential, magnetic field, lattice…) Dirac-BdG Hamiltonian:. with small, and matrix