• 沒有找到結果。

The Performance of Feedback Control System

N/A
N/A
Protected

Academic year: 2021

Share "The Performance of Feedback Control System"

Copied!
35
0
0

加載中.... (立即查看全文)

全文

(1)

2017年10月24日 1

The Performance of Feedback Control System

• Introduction

• Performance of a Second-order System

• The S-Plane Root Location and The Transient Response

• The Concept of Stability

• The Routh-Hurwitz Stability Criterion

– Case1:No element in the first column is zero.

– Case 2: Zeros in the first column while some other elements of the row containing a zero in the first column are nonzero.

– Case 3: Zeros in the first column, and the other element of the row containing the zero are also zero.

– Case 4: Repeated roots of the characteristic equation on the imaginary axis.

(2)

Introduction

(3)

2017年10月24日 3

Second-order system parameters

system gain: DC gain

s s s s

s K

M K M M

s K M s B

s M T gain

DC 1

1 1

lim )

( lim

0 2

0  

If the transfer function is stable, the DC gain as follows:

T(s)

Damping ratio,

Characteristic equation

Second-order standard form:

1 ) ( :

2 ,

) (

) ) (

( 2 2

2

 

DC gain T s

s s

s R

s s Y

T s

n n

n

s  

0 2

)

(

ss2nsn2

F

 

The roots of 1

2

4 ) 2 ( , 2

- : )

( 2

2 2

2

1

     

n n n n n

s F

(4)

Case I: for ,the roots are negative real (over-damping) 1

2 2 1

1 2

1 2

) )(

) (

(

s A s

A s

s s

Ts n

If (unit step function)

s s

R 1

)

(

Y s

Ae t A e t L

t y

s A s

A s

s s

s s Y

2 1

2 1

1

2 2 1

1 2

1 2 2

1 ) ( )

(

1 , )

)(

( ) 1

(

  

 

 

 

 

 

t

1 S-plane

Re Im

1 2

(5)

2017年10月24日 5

Case II: for ,they are double roots, (critical-damping) 1

1  

2  

n

S-plane

Re Im

t

n y t Ae t te

s s s R

s

T

  1, ( ) 1 )

( ) ,

) (

( 2

2

t

1

1 1 

 

(6)

Case III: for , the roots are complex conjugate pair (under-damping) 0  1

2 2

1,    1 

    

n j n

S-plane

Re Im

1

1 1 

 

1 0 

j

d

Definition: damping factor:

delay (oscillation ) frequency:

n

 

1 2

dn

 

 

 2

1 2

2

tan 1 ),

1 sin(

1 1

)

( 

 

e

t

t

y

n

nt

12

1

(7)

2017年10月24日 7

) (t y

(sec) t

ymax

tp ts

td

1

0 1 . 0

5 . 0

9 . 0

t2

t1

Overshoot

tr=t2-t1

% 5

% 2 or

Typical unit-step response of a second-order control system 1 2

1



e nt 1 2

1



e nt

d

(8)

% 100

% 100 .

1 1

1

1

1

0 1

sin

t 0

0 1

sin 1

) (

2 2

1 max /

1 / max

2 2

2 2

2 2

 

 

 

 









 

y e y O y

P e y

M t

t t n n

t

n t t

e

t dt e

t dy

fin fin p

n p

p n

n n

t

n n t

n

n

Percent over-shoot:

(9)

2017年10月24日 9

Settling Time:

02 . 0 for

, 4 )

1 02 . 0 1 ln(

02 . 0 1

1

2 2

ss n

n s

t

e t

e n s







Factor n

Damping :  

2 2

1 1

1 1

tan cos 1







n n n

d d

tr

(10)

Case IV: for (zero-damping) 0

2 2

2 2

1, , ( )

n n

n T s s

j

 

y ( t )  1  cos 

n

t

t

1

CaseV: for (negative-damping) 1 0

2

 

 

 2

1 2

2

tan 1 ),

1 sin(

1 1

)

( 

 

e

t

t

y

n

nt

 0



n

S-plane

Re Im

(11)

2017年10月24日 11 0>>-1

0>>-1 0<<1

0<<1

=-1

=0

=1

>1 <-1

=0

 -



n is held constant while the damping ratio is varied

2 1

2 ,

1    

s nn

  >1 : Overdamped

s  n

1,2

  =1 : Critically damped

2 2

,

1     1

s n j n

0< <1 : Underdamped

j n

s   

1,2

  =0: Undamped

2 2

,

1     1

s n j n

  <0 : Negatively damped

(12)

1 S - 平面

0

j

1

0 t

c t( )

1

0 t

c t( )

1 S - 平面

j

0

1

0 t

c t( )

0  1 S - 平面

j

0

1

0 t

c t( )

0 S - 平面

j

0

1

0 t

c t( )

  1 0 S - 平面

j

0

1

0 t

c t( )

 1 S - 平面

j

0

(13)

2017年10月24日 13

)

(s p

s k

 )

(s

E C(s)

) (s

5

R

, 100 ) ,

( ) (

2

 

  k p

k ps s

k s

R s C

% 44

% 100 .

, 25 . 2 0

, 5 10

100 1 2



PO e

n n

sec / 6825 . 9 1

, 3245 . 0 1

sec, 6 .

4 1 2

2 rad

t

t d n

n p

n

s



sec 648 . 1 0 ,

2 :

Re

T f f mark d

T

0.3245 1.6 1.44

1

sec

(14)

j

1

nn2

3

n 1

2

3 n n

n  

  

constant n

j

0

1

2

3 1 2

3  

  

constant

j

23

1

0

0

3

1 2

j

1

dd2 1

2 d

d

 

(15)

2017年10月24日 15

The S-plane Root Location and the Transient Response

1

2

n d

(16)

S-plane A

B

C

Second-order step response

System A

(17)

2017年10月24日 17

(18)

ζ P.O 0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

) (s G

) (s H ) (s E )

(s

R C(s)

2 2.4

t(msec) t1

2 t1=40 ,k=? P=?

2 2.4

t(msec) T

3 T=40 ,k=? P=?

2 2.4

t(msec) ts

1 P.o=?

Home Work1

(19)

2017年10月24日 19

The Concept of Stability

Stability Absolute stability

Relative stability

The methods for the determination of stability of linear continuous-time systems:

Routh-Hurwitz criterion

Nyquist criterion

Bode diagram

j

S-plane

stable

stable

unstable

unstable

A stable system is a dynamic system with a bounded response to a bounded input

(20)

S-plane

(21)

2017年10月24日 21

(22)
(23)

2017年10月24日 23

Bounded-input bounded-output (BIBO) stability:

System

) (t

u y(t)

)

(t h(t)

d h t

u t

y d

h t

u t

y

d h t

u t

y

) ( ) (

) ( )

( ) (

) (

) ( ) (

) (

0 0

0

M t

u( ) 

If u(t) is bounded, y(t) M

0h()d

N t

y )( Thus, if y(t) is to be bounded, or

Q d

h

N d

h M

0 0

) (

) (

number positive

finite are

Q and N M,

(24)

The Routh-Hurwitz Stability Criterion

Consider the characteristic equation of a linear SISO system

0 )

( 1 1 1 0

n n

n

n n n

a s a a s a

a s a

s

q

ime ree at a t s taken th

f the root products o

e o at a tim s taken tw

f the root products o

all roots

a a

a a

a a

n n

n n

n n

3 2 1

  

0 ...

) 1 ( ....

...) (

...) (

) ...

(

0 ) )...(

)(

( )

(

2 1 3

4 2 1 3 2 1

2 3

2 2 1 1

2 1

2 1

r r a

s r

r r r r r a

s r

r r r a s

r r

r a s

a

r s r

s r s a s

q

n n

n n

n n

n n n

n n

n n

(25)

2017年10月24日 25

b1

c1

. . . .

The necessary condition to guarantee that all roots of q(s)=0 with negative real part are:

All the coefficients of the equation have the the same sign.

None of the coefficients vanishes.

Necessary but not sufficient!

0 ...

)

(s a s a 1s 1 a1sa0

q n n n n

0 3 2

7 5

3 1

1

6 4

2

. .

....

...

s s s s

a a

a a

s

a a

a a

s

n n

n n

n n

n

n n

n n

n

1 3 2

1 1

n n n n n

a a a a b a

b2

1 5 4

1 2

n n n n n

a a a a b a

b3

1 2 1 3 1

1 b

b a a

c b n n

The Routh-Hurwitz criterion states that the number of roots of q(s) with positive real parts is equal to the number of changes in sign of the first column of the Routh array

(26)

Case1:No element in the first column is zero Second-order system

0 )

(s a2s2 a1sa0 q

0 1 2

s s s

0

1

0 2

a

a a

0 1

2 0 1 1

0 a a

a a

b a

The system is stable if all the coefficients have the same sign.

Third-order system

0 )

(s a3s3a2s2 a1sa0 q

0 1 2 3

s s s s

0 2

1 3

a a

a a

0

2 0 3 1 2

1 a

a a a

b a

a0

set

The system is stable if

0

~ 0

3 a

a

0 3 1

2a a a

a

(27)

2017年10月24日 27

Case 2: Zeros in the first column while some other elements of the row containing a zero in the first column are nonzero.

0 10 11

4 2

2 )

(ss5s4s3s2s  q

0 1 2 3 4 5

s s s s s s

10 0 2 1

1 1

d c

0 0 10

6 4 2

0 0 0 0 10

11

) (

) 10 11

4 2

2 1 (

10 11

4 2

2 )

(

5 5

1 2

3 4

1 5

1

5 4

3 2

1 1

1 1

1 1

1

x F

x x

x x

x s

F

x x

x x

x x

s x x



12 12 4

c1

10 6 6

1 1

1   

c

d c

 0

(28)

Case 3: Zeros in the first column, and the other element of the row containing the zero are also zero.

This condition occurs when the polynomial contains singularities that are symmetrically located about the origin of the s-plane.

S-plane S-plane S-plane

(29)

2017年10月24日 29

0 8 4

2 )

(

ss3s2s  q

0 1 2 3

0 0

8 2

4 1

s s s s

j2 s

0 4 s

0 8 2

) (

2 2

s s

A

8 2s

8 2s

4s s

8 4 2

s 4 s

2 s

) 1 (

2 2 3

2 3

2

s s

0 ) 2 )(

2 )(

2 (

)

(

sssj sj

q

The system has not any pole on the RHP, but system is marginally stable.

) 2

( ) 2 (

ds s s dA

8

0

8 2

4 1

0 1 2 3

s s s s

2

(30)

0 0 0 s

0 1 1

0 4 4

1 2 1

1 2 1

1 2 3 4 5

s s s

s s s

ds s

dA( )  4 3 4

1 2s s

1 2

s

s 2s

1 2

2 s

1 2

1

2 4

2 4

3 5

2 3

4 5 2

4

s s

s s s

s s

s

s

.

0 0 0

1 2 1

1 2 1

0 1 2

2 )

(

2 3 4 5

2 3 4 5

s s s s

s s s s

s s

q

j j j j s

s s

s s A

, , ,

0 ) 1 ( 1 2 )

( 4 2 2 2

(2)

(1)

j j j j s

s s

s s A

, , ,

0 ) 1 ( 1 2 )

( 4 2 2 2

The system has not any root on the RHP, but the system is unstable.

Repeated roots on the imaginary axis

Case 4: Repeated roots of the characteristic equation on the imaginary axis.

(31)

2017年10月24日 31

0 4

2 )

(

ss3s2skq

k s

s k

k s

s

0 2

8

2

4 1

0 1 2 3

0

) 2 (

8

) 1 (

k k

8

0

Ans:0< k<8, system is stable.

0 4 )

2 (

3 )

(ss3ks2ks  q

Ans: k>0.528, system is stable.

(32)
(33)

2017年10月24日 33

ka s s

ka b

s

k s

ka s

c

0 ) 10 (

8

17

1

0 1 1

1 2 3 4

0 )

10 (

17 8

)

( ss

4

s

3

s

2

kskaq

0 64 ) 126 )(

10 (

0 126

8 ) 10 (

and 8 , 126

1 1

1 1

ka k

k ka k

b

ka k

c b b k

(34)
(35)

2017年10月24日 35

參考文獻

相關文件

It has been well-known that, if △ABC is a plane triangle, then there exists a unique point P (known as the Fermat point of the triangle △ABC) in the same plane such that it

Wang, Unique continuation for the elasticity sys- tem and a counterexample for second order elliptic systems, Harmonic Analysis, Partial Differential Equations, Complex Analysis,

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =&gt;

The observed small neutrino masses strongly suggest the presence of super heavy Majorana neutrinos N. Out-of-thermal equilibrium processes may be easily realized around the

The temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks, that are well fit by a simple six-parameter

• Formation of massive primordial stars as origin of objects in the early universe. • Supernova explosions might be visible to the most

The case where all the ρ s are equal to identity shows that this is not true in general (in this case the irreducible representations are lines, and we have an infinity of ways

Corollary 13.3. For, if C is simple and lies in D, the function f is analytic at each point interior to and on C; so we apply the Cauchy-Goursat theorem directly. On the other hand,