• 沒有找到結果。

數學導論

N/A
N/A
Protected

Academic year: 2022

Share "數學導論"

Copied!
103
0
0

加載中.... (立即查看全文)

全文

(1)

數學導論

學數學

(2)
(3)

前言

學 學 數學 學 數學 . 學數學

論 . 學 , .

(Logic), (Set) 數 (Function) . , 學

論. 論 學 數學 .

, ,

. , .

, . , 論

, . , .

v

(4)
(5)

Chapter 1

Basic Logic

學 數學 學 言. “ ” , logic

“ ”. 學 學 ,

, 學 .

, 學 數學 .

數學 論 statement. 2 > 0 statement,

3 < 2 statement x > 0 statement ( x ).

1.1. Connectives

數 statements statement, statements connec-

tives. connectives statement .

1.1.1. And. “and” connective. connective

. P Q statement, P∧ Q P and Q

statement. P∧ Q ? “and” “ ”

, P Q P∧ Q , P Q

, P∧ Q . 2 > 0 and 2 < 7 , 2 > 0

2 > 7 .

truth table connectives statements

. T (true), F (false). true table.

P Q P∧ Q

T T T

T F F

F T F

F F F

Truth table P, Q , P, Q ,

. P T, Q F P∧ Q F.

1

(6)

P, Q P∧Q Q∧P . P∧Q

Q∧ P . logically equivalent.

Truth table statements connectives

, (P∧ Q) ∧ R truth table

P Q R P∧ Q (P ∧ Q) ∧ R

T T T T T

T F T F F

F T T F F

F F T F F

T T F T F

T F F F F

F T F F F

F F F F F

Question 1.1. P∧ (Q ∧ R) truth table ?

(P∧ Q) ∧ R P∧ (Q ∧ R) . (P∧ Q) ∧ R P∧ Q

R ; P∧ (Q ∧ R) Q∧ R P . truth table

(P∧ Q) ∧ R P∧ (Q ∧ R) logically equivalent.

1.1.2. Or. P Q statement, P∨ Q P or Q statement.

“or” “ ” . “ ” :

, . “ ” , ;

105 . “ ”

105 , 105

. 數學 , “or” , P Q

P∨ Q ( P Q ). 言 , P Q

, P∨ Q .

, 4 < 5 or 4 < 3 statement , 4 < 5 . 4 > 5 or 4 > 6

statement , . 4 < 5 or 4 > 3 statement

, and , , .

P∨ Q truth table.

P Q P∨ Q

T T T

T F T

F T T

F F F

Question 1.2. P∨ Q Q∨ P logically equivalent? (P∨ Q) ∨ R P∨ (Q ∨ R) logically equivalent?

and, or connectives, . P, Q, R statements

(P∧ Q) ∨ R, (P ∨ Q) ∧ R,... statements.

(7)

1.1. Connectives 3

? (P∧ Q) ∨ R (P∧ Q) R . R ,

(P∧ Q) ∨ R , R P, Q , (P∧ Q) ∨ R . ,

(P∧ Q) ∨ R P∧ (Q ∨ R) logically equivalent. P∧ (Q ∨ R)

P Q∨ R . R , Q Q∨ R ,

P P∧ (Q ∨ R) . R , (P∧ Q) ∨ R ,

(P∧ Q) ∨ R P∧ (Q ∨ R) logically equivalent. truth

table logically equivalent.

P Q R P∧ Q (P ∧ Q) ∨ R

T T T T T

T F T F T

F T T F T

F F T F T

T T F T T

T F F F F

F T F F F

F F F F F

P Q R Q∨ R P ∧ (Q ∨ R)

T T T T T

T F T T T

F T T T F

F F T T F

T T F T T

T F F F F

F T F T F

F F F F F

, (P∨ R) ∧ (Q ∨ R) truth table, (P∧ Q) ∨ R (P∨ R) ∧ (Q∨ R) logically equivalent.

P Q R P∨ R Q ∨ R (P ∨ R) ∧ (Q ∨ R)

T T T T T T

T F T T T T

F T T T T T

F F T T T T

T T F T T T

T F F T F F

F T F F T F

F F F F F F

Question 1.3. truth table (P∨ Q) ∧ R (P∧ R) ∨ (Q ∧ R) logically equivalent.

truth table logically equivalent. logic

logical equivalences .

connectives truth table . 論 logical equivalences

, logical equivalences.

“or” 數學 ≤. 數學 x≥ y x > y or x = y,

4≥ 3 statement or . 4≤ 5, .

1.1.3. If - Then. 數學 connective 學

connective, . P Q statement, P⇒ Q if P

then Q statement, P Q . P⇒ Q 數學

. , 數學 P⇒ Q P, Q (

P, Q ). P, Q statement, x 數 “ ”.

(8)

connective P, Q ( ). 數學

“if x > 3 then x2> 9” statement ( x > 3 x2> 9 statement, if-then , statement). x > 3 x2> 9 .

“if 3 > 2 then 2 is even” statement ( 3 > 2 2 數 ).

P⇒ Q 前, 數學 論 論 .

數學 , if P then QP , Q ”. ( :

statement, , .) ,

if P then Q P , Q . P ,

Q . 數學 論 if P then Q P , Q

“ ”, P . if P then Q

P, Q statements connective , if P then Q

statement, P, Q P⇒ Q .

P⇒ Q Q⇒ P 數學 . 學 P⇒ Q Q⇒ P.

, P⇒ Q P Q , P

Q . if x > 3 then x2> 9, x≤ 3 x2> 9.

Q P . 言 , P⇒ Q Q⇒ P.

if P then Q , P⇒ Q Q⇒ P

equivalent.

Question 1.4. P Q . Q ,

言 P ?

P⇒ Q . 前 數學 , P, Q

statements , P Q , P⇒ Q ,

P⇒ Q . P Q , P⇒ Q ,

P⇒ Q . P , P⇒ Q ? P⇒ Q

P , Q , P , QP⇒ Q ,

P⇒ Q . 2 > 3 22> 9 , 前

if x > 3 then x2> 9 statement. ,−4 > 3 , (−4)2> 9

, 前 if x > 3 then x2> 9 statement. 言 , P⇒ Q

truth table.

P Q P⇒ Q

T T T

T F F

F T T

F F T

Question 1.5. truth table Q⇒ P P⇒ Q logically equivalent?

(P⇒ Q) ⇒ R P⇒ (Q ⇒ R) logically equivalent?

P⇒ Q , “if and only if”

connective .

(9)

1.1. Connectives 5

P⇒ Q . if P then Q ,

Q if P

P implies Q

P is sufficient for Q ( P Q )

Q is necessary for P ( Q P )

P only if Q ( Q P )

Q whenever P ( P Q )

1.1.4. If and Only If. P⇒ Q Q⇒ P and , (P⇒ Q) ∧ (Q ⇒ P),

“P if and only if Q”, P⇔ Q .

數學 P⇔ Q . 數學 P⇔ Q P⇒ Q

Q⇒ P. P Q , Q P . P, Q

. 言 , P⇔ Q Q P

Q P ( P Q ).

P⇔ Q “P Q ” ( P Q) .

P⇔ Q . 前 數學 ,

P⇔ Q P Q Q P . . P, Q

. P⇔ Q P Q

. P⇔ Q truth table.

P Q P⇔ Q

T T T

T F F

F T F

F F T

Question 1.6. P⇒ Q Q⇒ P truth table P⇔ Q truth table.

Question 1.7. P⇔ Q Q⇔ P logically equivalent? (P⇔ Q) ⇔ R P⇔ (Q ⇔ R) logically equivalent?

P⇔ Q , 數學 , .

P⇔ Q P , Q , P⇒ Q .

, (P⇒ Q) ∧ (Q ⇒ P) P⇔ Q, P, Q , P⇔ Q ,

P⇒ Q Q⇒ P . P, Q , P⇒ Q .

P Q , Q⇒ P , P⇒ Q P⇔ Q .

P⇒ Q , 導 P⇒ Q, Q ⇒ P P⇔ Q truth table (

equivalent), 前 數學 P⇒ Q Q⇒ P , P Q ,

P⇒ Q .

P⇔ Q . P if and only if Q ,

(10)

P iff Q

P is equivalent to Q

P is necessary and sufficient for Q

1.2. Logical Equivalence and Tautology

前 logical equivalence . logical equivalence

導 logical equivalences. Truth table

logical equivalence .

. P, Q statements , P∧ Q Q∧ P

statements ( ), P∧ Q Q∧ P logically

equivalent . P, Q 數 , statement

, P∧ Q P, Q , P∧ Q statement

. , ( ) P, Q ,

connectives “statement form”, P∧ Q Q∧ P

statement forms logically equivalent. “∼” statement forms logically equivalent, (P∧ Q) ∼ (Q ∧ P).

logical equivalence : logically equivalent

statement forms 數 statement form , logical

equivalence. (P∧ Q) ∼ (Q ∧ P), P P⇒ Q

((P⇒ Q) ∧ Q) ∼ (Q ∧ (P ⇒ Q)).

, logically equivalent statement forms truth

table, 數 statement forms

truth table. , 數 ( ) logically equivalent

statement forms , statement forms logically equivalent.

(P∧ Q) ∼ (Q ∧ P) (R∨ S) ∼ (S ∨ R), (P∧ Q) ∼ (Q ∧ P) P R∨ S

, P S∨ R

((R∨ S) ∧ Q) ∼ (Q ∧ (S ∨ R)).

, statement forms A, B logically equivalent B statement form C logically equivalent, A C logically equivalent.

((P∧ Q) ∨ R) ∼ ((Q ∧ P) ∨ R), ((Q∧ P) ∨ R) ∼ (R ∨ (Q ∧ P)), ((P∧ Q) ∨ R) ∼ (R ∨ (Q ∧ P)).

truth table .

truth table statement forms

logically equivalent. logically equivalent “ ” . 前

(11)

1.2. Logical Equivalence and Tautology 7

學 logical equivalences, ,

(P∧ Q) ∼ (Q ∧ P), (P ∨ Q) ∼ (Q ∨ P) (1.1)

,

((P∧ Q) ∧ R) ∼ (P ∧ (Q ∧ R)), ((P ∨ Q) ∨ R) ∼ (P ∨ (Q ∨ R)) (1.2)

∧,∨ ,

((P∧ Q) ∨ R) ∼ ((P ∨ R) ∧ (Q ∨ R)), ((P ∨ Q) ∧ R) ∼ ((P ∧ R) ∨ (Q ∧ R)) (1.3) 導 logical equivalences .

Example 1.2.1. (P∧ Q) ∨ (P ∨ Q) statement form. (1.3) ((P∧ Q) ∨ R) ∼ ((P ∨ R) ∧ (Q ∨ R)), R P∨ Q ,

(P∧ Q) ∨ (P ∨ Q) ∼ ((P ∨ (P ∨ Q)) ∧ (Q ∨ (P ∨ Q))). (1.4) (P∨ (P ∨ Q)) ∼ ((P ∨ P) ∨ Q) (Q∨ (P ∨ Q)) ∼ (Q ∨ (Q ∨ P)) ∼ ((Q ∨ Q) ∨ P)

((P∨ (P ∨ Q)) ∧ (Q ∨ (P ∨ Q)) ∼ (((P ∨ P) ∨ Q) ∧ ((Q ∨ Q) ∨ P)). (1.5) (P∨ P) ∼ P (P∧ P) ∼ P,

(((P∨ P) ∨ Q) ∧ ((Q ∨ Q) ∨ P)) ∼ ((P ∨ Q) ∧ (Q ∨ P)) ∼ (P ∨ Q). (1.6) (1.4), (1.5), (1.6),

((P∧ Q) ∨ (P ∨ Q)) ∼ (P ∨ Q).

statement form truth table , statement form

tautology. . P⇔ P truth table

P P⇔ P

T T

F T

,

P⇔ P tautology.

Question 1.8. P⇒ P tautology? P⇒ (P ⇒ P) tautology?

Tautology , .

logically equivalent. statement forms A, B logically equivalent ,

A, B , A⇔ B . A⇔ B tautology. , A⇔ B

tautology , A, B , truth table. A∼ B.

.

Proposition 1.2.2. A, B statement forms. A B logically equivalent A⇔ B tautology.

(12)

前 , A∼ B A⇔ B tautology ( A∼ B A⇔ B tautology), A⇔ B tautology A∼ B. Proposition 1.2.2

A∼ B A⇔ B tautology.

Question 1.9. A, B statement forms. A∼ B A⇒ B tautology?

A⇒ B tautology A∼ B?

Question 1.10. A, B,C statement forms. A⇔ B B⇔ C tautology, A⇔ C tautology?

tautology contradiction ( ). statement form

. contradiction, “not” .

Question 1.11. A, B statement forms.

(1) A tautology, (A∧ B) ∼ B A∨ B tautology.

(2) A contradiction, (A∨ B) ∼ B A∧ B contradiction.

1.3. Not and Contradiction

“not” not equivalences. 前 ,

. , ,

.

Not , statement P, ¬P, not P,

P”. P ,¬P . , P ,¬P .

¬P truth table.

P ¬P

T F

F T

. ,

P∼ ¬(¬P). (1.7)

Not P , connectives statement not ,

. ¬(P ∧ Q), (¬P) ∧ (¬Q),

truth table

P Q P∧ Q ¬(P ∧ Q)

T T T F

T F F T

F T F T

F F F T

P Q ¬P ¬Q (¬P) ∧ (¬Q)

T T F F F

T F F T F

F T T F F

F F T T T

, P Q P Q ,¬(P ∧ Q) (¬P) ∧ (¬Q) . ,

truth table,

¬(P ∧ Q) ∼ (¬P) ∨ (¬Q). (1.8)

(13)

1.3. Not and Contradiction 9

數學 . 0≤ x ≤ 1, x≤ 1 and

x≥ 0. , x > 1 or x < 0. 數 x P x≤ 1

statement, Q x≥ 0, ¬P, ¬Q x > 1, x < 0. 0≤ x ≤ 1 P∧ Q x > 1 or x < 0 (¬P)∨(¬Q). ¬(P∧Q) (¬P)∨(¬Q) logically equivalent, (¬P) ∧ (¬Q) ( x > 1 and x < 0 ).

statement form logically equivalent not.

(1.8) P, Q ¬P ¬Q ,

¬((¬P) ∧ (¬Q)) ∼ (¬(¬P)) ∨ (¬(¬Q)).

¬(¬P) ∼ P,

¬((¬P) ∧ (¬Q)) ∼ (P ∨ Q).

not,

¬(P ∨ Q) ∼ (¬P) ∧ (¬Q). (1.9)

x≥ 0 , x < 0. P, Q x > 0, x = 0, x≥ 0

P∨ Q. ¬P x≤ 0, ¬Q x̸= 0. (¬P) ∧ (¬Q) x≤ 0 and x ̸= 0, x < 0

x≥ 0 .

(1.7), (1.8), (1.9) 導 not statement forms logical equiva-

lence . (1.8), (1.9) DeMorgan’s laws.

, statement form ¬(P ⇒ Q) logically equivalent ?

P⇒ ¬Q, truth table , P P⇒ Q

P⇒ ¬Q , P . ¬(P ⇒ Q) P⇒ ¬Q

logically equivalent, .

Question 1.12. x≥ 0 ⇒ x ≥ 1 數 x, x≥ 0 ⇒ x < 1

數 x. ?

P⇒ Q P , , .

, A, B statement form A tautology, ¬(A ⇒ B) A⇒ ¬B logically

equivalent. , A , A⇒ B B

.

Question 1.13. x2≥ 0 ⇒ x > 0 數 x, x2≥ 0 ⇒

x≤ 0 數 x. ?

¬(P ⇒ Q) logically equivalent, P⇒ Q.

P⇒ Q P Q . Q , P

. Q , P . Q∨ ¬P statement

form. truth table

(14)

P Q ¬P Q ∨ ¬P

T T F T

T F F F

F T T T

F F T T

(P⇒ Q) ∼ (Q ∨ ¬P). (1.10)

(Q∨ ¬P) ∼ ((¬P) ∨ Q) ¬(¬Q) ∼ Q, (P⇒ Q) ∼ ((¬P) ∨ ¬(¬Q)), (1.10) ((¬P) ∨ ¬(¬Q)) ∼ ((¬Q) ⇒ (¬P)),

(P⇒ Q) ∼ ((¬Q) ⇒ (¬P)). (1.11)

P⇒ Q , Q P , .

(1.10), ¬(P ⇒ Q) ∼ ¬(Q ∨ ¬P). DeMorgan’s laws

¬(Q ∨ ¬P) ∼ ((¬Q) ∧ ¬(¬P))

¬(P ⇒ Q) ∼ (P ∧ (¬Q)). (1.12)

(1.10), (1.11), (1.12) “ P Q” 論 logical

equivalences.

(1.10) , statement form logical equivalence

¬,∧,∨ . P⇔ Q ,

(P⇔ Q) ∼ (Q ∨ (¬P)) ∧ (P ∨ (¬Q)). (1.13)

∧,∨ ( (1.3))

(P⇔ Q) ∼ (P ∧ Q) ∨ ((¬P) ∧ (¬Q)). (1.14)

DeMorgan’s laws, (1.7), ∧,∨ ( (1.1),(1.2),

(1.3)), 導 statement form not logical equivalence. (1.13) not

¬(P ⇔ Q) ∼ ((¬Q) ∧ P) ∨ ((¬P) ∧ Q).

, (1.14) Q ¬Q ,

¬(P ⇔ Q) ∼ (P ⇔ ¬Q).

A statement form , ¬A A , A⇔ ¬A truth

table , A⇔ ¬A contradiction. , B statement form

A⇔ B contradiction, A B , B∼ ¬A.

Proposition 1.2.2 .

Proposition 1.3.1. A, B statement forms. ¬A B logically equivalent A⇔ B contradiction.

(15)

1.4. Quantifiers 11

1.4. Quantifiers

statement connective not

, statement form . statement,

, . 數學 statement quantifier

( ) , . quantifiers,

.

數學 quantifiers :

• “for all”, “for every” ( ), .

• “there exists”, “there is” ( , ), .

• “there is a unique” ( ), ∃! .

∃! , 論 , ∃.

, 論 quantifiers .

數 數 , 數 數

. quantifiers , .

數. ∀x ∃x, for all x in

R there exists an x inR, 數 .

: ∀x, x2≥ 0. 數 x x2≥ 0.

statement , 數 x , . statement

∀x, P(x)”. P(x) x ( P(x) x2≥ 0).

x P(x) . statement x ,

. ∀x, x2> 0 (x = 0 ).

, “∃x, P(x)” , x P(x) . statement ,

x P(x) . , ,

, ( there exists ). ∀x, x2> 0

, ∃x, x2> 0 ( x = 1, ).

, “∀x, P(x)” , “∃x, P(x)” (

x ). . x P(x), x

P(x). . “∀x, P(x)” ,

? 前 “∀x, P(x)” x P(x) ,

, x P(x) . ∃x, ¬P(x).∀x,

x2> 0 , ∃x, x2≤ 0.

學 “∀x, P(x)”∀x, ¬P(x)”.∀x, ¬P(x)”

∀x, P(x)” . “∀x, P(x)” , “∀x, ¬P(x)” .

∀x, P(x)”∀x, ¬P(x)”. ∀x, x2> 0 , ∀x, x2≤ 0 ,

(16)

∃x, x2≤ 0 . , . 言 logical equivalence

¬(∀x,P(x)) ∼ (∃x,¬P(x)). (1.15)

∃x, P(x)”, x P(x) . x

P(x), ∀x, ¬P(x). , 學 “∃x, P(x)”∃x,

¬P(x)”. , x P(x) x P(x).

∃x, ¬P(x)”∃x, P(x)”. 言 logical equivalence

¬(∃x,P(x)) ∼ (∀x,¬P(x)). (1.16)

Question 1.14. (1.15) logical equivalence(1.16).

Quantifier 數 , 數 ,

數 數 . 數 , “∀x,∃y,P(x,y)”

statement, P(x, y) x, y . , 數 f (x) x = a

l ( limx→af (x) = l)∀ε > 0,∃δ > 0,0 < |x −a| < δ ⇒ | f (x)−l| < ε”

數 . statement.

(1)∀x,∃y,P(x,y) (2)∃x,∀y,P(x,y) (3)∀x,∀y,P(x,y) (4)∃x,∃y,P(x,y).

(1) : x y P(x, y) . x ,

y, y , x . ∀x,∃y,x + y = 0

statement . x, y x + y = 0. y x

, y =−x. x = 1 y =−1, x = 2 y =−2. x, y ,

.

(2) : x y P(x, y). x ,

y, x , y . ∃x,∀y,x + y = y

statement . x y x + y = y. x

, x = 0. (1) ∀x,∃y,x + y = 0 statement

, ∀x ∃y ∃y,∀x,x + y = 0 statement .

y x x + y = 0. , ,

∀x,∃y,P(x,y)”∃y,∀x,P(x,y)” ∀x ∃y ,

.

Question 1.15. ∃x,∀y,x + y = y statement , ∀y,∃x,x + y = y,

? ∀x,∃y,x + y = y ∃y,∀x,x + y = y, ?

Question 1.16. f (x, y), g(x, y). “∀x,∃y, f (x,y) = 0”

“∃y,∀x,g(x,y) = 0” . f (x, y) = 0 g(x, y) = 0

, x = 101 ?

(3) (4) . (3) x, y P(x, y)

. , (x, y) P(x, y) ,

(17)

1.4. Quantifiers 13

∀x ∀y statement. (4) x y

P(x, y). , (x, y) P(x, y) .

∃x ∃y statement. x = 3 , y = 7

P(3, 7) , y = 7 , x = 3 P(x, y) . 言

(3), (4) 數 quantifier , x, y . (3) ∀x,y,

P(x, y), (4) ∃x,y, P(x,y).

數 statement quantifier . (1)

, “∀x,∃y,P(x,y)”. , “∃y,P(x,y)” H(x) .

statement ∀x,H(x). (1.15), ∃x,¬H(x).

(1.16) ¬H(x) ∼ (∀y,¬P(x,y)),

¬(∀x,∃y,P(x,y)) ∼ (∃x,∀y,¬P(x,y)).

¬(∃x,∀y,P(x,y)) ∼ (∀x,∃y,¬P(x,y))

¬(∀x,∀y,P(x,y)) ∼ (∃x,∃y,¬P(x,y))

¬(∃x,∃y,P(x,y)) ∼ (∀x,∀y,¬P(x,y)).

前 , 數 f (x) limx→af (x) = l

∃ε > 0,∀δ > 0,¬(0 < |x − a| < δ ⇒ | f (x) − l| < ε).

(1.12)

¬(0 < |x − a| <δ ⇒ | f (x) − l| < ε) ∼ ((0 < |x − a| < δ) ∧ (| f (x) − l| ≥ ε)).

limx→af (x) = l

∃ε > 0,∀δ > 0,(0 < |x − a| < δ) ∧ (| f (x) − l| ≥ ε).

, . , ∀x.

x≥ 3 ⇒ x2≥ 9, statement ∀x,x ≥ 3 ⇒ x2≥ 9. ,

statement 數 x . 數 x, x≥ 3,

x2≥ 9. x < 3, x≥ 3 前 , x≥ 3 ⇒ x2≥ 9

. ∀x,x ≥ 3 ⇒ x2≥ 9 ( P P⇒ Q

, 學 ). ∃x , ∀x ∃x

. 言 , x P(x) Q(x) statement ,

∀x,P(x) ⇒ Q(x) , ∀x P(x)⇒ Q(x) . x

P(x) Q(x) , ∃x. , ∃x ,

∃x,P(x) ⇒ Q(x) , ∃x,P(x) ∧ Q(x) . , ∃x,P(x) ⇒ Q(x)

x P(x)⇒ Q(x) , P(x) x P(x)⇒ Q(x) .

x P(x), ∃x,P(x) ⇒ Q(x) , x

P(x) Q(x) . 3 數 x, x2= 10

(18)

∃x,(x > 3) ∧ (x2= 10) ( x =√

10), ∃x,(x > 3) ⇒ (x2= 10) ( x = 2 ).

Question 1.17. f (x, y). 數 a > 0 f (a, y) = 0

statement, 數學 ? statement .

(19)

Chapter 2

Methods of Proof

學 , 學 . .

, ,

. 2.1. IF-Then

數學 P⇒ Q statement. statement,

direct method, contrapositive method contradiction method .

2.1.1. Direct Method. direct method , P

Q . ( , P , Q ). P⇒ Q

, P , . .

Example 2.1.1. p, a, b 數. if p| a and p | b, then p | a + b.

Proof. p| a, p | b, 數 m, n a = pm, b = pn.

a + b = pm + pn = p(m + n).

m + n 數, p| a + b. 

, .

P⇒ Q, P⇒ R R⇒ Q, P⇒ Q .

P⇒ R, P R , R⇒ Q R Q ,

P Q , P⇒ Q. .

Example 2.1.2. aa̸= 1. x, yax= ay, x = y.

Proof. 數 y, ay̸= 0, ax= ay, ay ax−y= 1.

數 z, az= 1, z = 0, x− y = 0, x = y. 

15

(20)

, (ax= ay)⇒ (ax−y= 1), (ax−y= 1)⇒ (x = y)

(ax= ay)⇒ (x = y). , aa̸= 1,

az= 1, z = 0. direct method , contradiction

method .

direct method , P ,

Q. proof in cases. .

Example 2.1.3. x 數. if x2− 3x + 2 < 0, then 1 < x < 2.

Proof. x2− 3x + 2 = (x − 1)(x − 2) < 0, 2 , (1) (x− 1) < 0 and (x − 2) > 0;

(2) (x− 1) > 0 and (x − 2) < 0.

(1) x < 1 x > 2. 數 x x < 1 x > 2, (1)

, (2), x > 1 x < 2. 1 < x < 2. 

, , 學 (1), (2)

x2−3x+2 < 0 ? . : x x2−3x+2 < 0,

x (1) (2). (1) (2) , x x2−3x+2 < 0,

x (2). x (2) x2− 3x + 2 < 0, (1),

if 1 < x < 2, then x2− 3x + 2 < 0, if x2− 3x + 2 < 0, then 1 < x < 2. . Question 2.1. x 數.

(1) “If x2− 3x + 2 < 0, then 0 < x < 3.” “If x2− 3x + 2 < 0, then 1.3 < x < 1.7.”

statements ?

(2) “If 0 < x < 3, then x2− 3x + 2 < 0.” “If 1.3 < x < 1.7, then x2− 3x + 2 < 0.”

statements ?

2.1.2. Contrapositive Method. (¬Q) ⇒ (¬P) P⇒ Q statement con- trapositive statement. , P⇒ Q (¬Q) ⇒ (¬P) logically equivalent

( (1.11)). P⇒ Q (¬Q) ⇒ (¬P) . ,

(¬Q) ⇒ (¬P) P⇒ Q .

P⇒ Q , P , ¬Q

contrapositive method. (¬Q) ⇒ (¬P).

. , 導

, statement , contrapositive statement .

contrapositive method . .

Example 2.1.4. x, y 數. if x̸= y, then x3̸= y3.

(21)

2.1. IF-Then 17

, f (x) = x3 , .

. contrapositive method , ¬(x3̸= y3) ( x3= y3), ¬(x ̸= y) ( x = y).

Proof. contrapositive method, x3= y3, 0 = x3− y3= (x− y)(x2+ xy + y2).

x2+ xy + y2= (x +1 2y)2+3

4y2.

x2+ xy + y2> 0, x = 0 and y = 0 ( x = y). (x− y)(x2+ xy + y2) = 0

x− y = 0, x = y. if x̸= y, then x3̸= y3. 

statement x , x ,

contrapositive method . .

Example 2.1.5. x 數. if x2 is even ( 數), then x is even.

Proof. contrapositive method, x 數, x2 數. x 數, x

x = 2n + 1, n 數. x2= (2n + 1)2= 4n2+ 4n + 1 = 2(2n2+ 2n) + 1

數. 

Question 2.2. x, y 數. contrapositive method if x + y is even, then x and y are both even or odd ( 數).

proof in cases , contrapositive method . Example

2.1.3 contrapositive method . , ¬(1 < x < 2) ( x≥ 2 or x≤ 1) ¬(x2− 3x + 2 < 0) ( x2− 3x + 2 ≥ 0). .

Example 2.1.6. x, y, a 數. if xy = a, then x≤√

a or y≤√ a.

Proof. contrapositive method, ¬((x ≤√

a)∨ (y ≤√

a)) ( x >√

a and y >√ a)

¬(xy = a) ( xy ̸= a). x, y, a , x >√

a and y >√

a xy > (√

a)2= a,

xy̸= a. 

Question 2.3. x, y, a 數. if xy = a, then x≥√

a or y≥√

a ?

, Example 2.1.6, ?

2.1.3. Contradiction Method. (1.10) P⇒ Q Q∨ ¬P logically

equivalent. , Q∨ ¬P P⇒ Q. Q∨ ¬P “ ”

, 前 proof in cases, . ¬(P ⇒ Q),

(¬Q) ∧ P logically equivalent ( (1.12)). (¬Q) ∧ P

, P⇒ Q . contradiction method ( ).

Contradiction method , (¬Q) P , 導

statement . (¬Q) P , P⇒ Q.

P ¬Q , 導,

(22)

direct method P , contrapositive method ¬Q . ,

direct method contrapositive method 導 ( PQ

¬Q¬P), 導 “ ” .

P⇒ Q , P ¬Q

, P ¬Q contradiction method.

.

Example 2.1.7. r 數, if r2= 2, then r is irrational ( 數).

數 數, direct method.

contrapositive method r 數, r2̸= 2 . 前

導 , contradiction method .

Proof. , rr2= r, . r 數,

r r = (m/n), m, n 數. m, n 數, 2,

, m, n 數. r2= 2, m2= 2n2, Example

2.1.5 m 數. m m = 2m, m 數. 4m′2= 2n2,

n2= 2m′2. Example 2.1.5 n 數. m, n

. if r2= 2, then r is irrational. 

Example 2.1.7 , r = (m/n) 2 ,

. contradiction method “ ”.

Example 2.1.2 , , a̸= 1 數 , z

數 az= 1, z = 0. contradiction method statement.

Example 2.1.8. a̸= 1 數. zaz= 1, z = 0.

, z̸= 0 az= 1 . ?

statement a = 1 前 ( ), a̸= 1.

Proof. contradiction method, z̸= 0 az= 1. z̸= 0, 1/z , (az)1/z= a az= 1,

a = (az)1/z= 11/z= 1.

a̸= 1 , az= 1, z = 0. 

2.1.4. If and Only If . P⇔ Q P⇒ Q Q⇒ P.

, 導 P⇒ Q ,

P⇔ Q. , ,

, P⇔ Q. , 導

. P⇔ Q P⇒ Q Q⇒ P

.

(23)

2.2. Existence and Uniqueness 19

a“a2⇔ a 數”, .

a = 2n, n 數, a2= (2n)2= 4n2 數. 導 ,

. a2 數, a2 4n2 ?

導 ( Example 2.1.5 ).

(P⇒ Q) ∼ ((¬Q) ⇒ (¬P)) (Q⇒ P) ∼ ((¬P) ⇒ (¬Q)) P⇔ Q (¬P) ⇔

(¬Q) logically equivalent. 學 P⇔ Q , (¬P) ⇔

(¬Q). , . a, b 數,

“ab is even⇔ a is even or b is even” “ab is odd⇔ a and b are odd”

. , , .

學 (¬Q) ⇒ (¬P) P⇒ Q. ,

, . statement ,

前 . , .

, ?

數學 statement:

The following are equivalent. (1) P; (2) Q; (3) R.

( P, Q, R , ).

P⇔ Q, Q ⇔ R and R ⇔ P.

, “ ” .

P⇒ Q, Q ⇒ R and R ⇒ P

. Q⇒ P , Q⇒ R R⇒ P , R⇒ Q , R⇒ P

P⇒ Q . P⇒ R , P⇒ Q Q⇒ R . ,

,

R⇒ Q, Q ⇒ P and P ⇒ R.

, P⇔ R ,

P⇔ Q and Q ⇔ R

. P⇒ R , P⇒ Q Q⇒ R , R⇒ P , R⇒ Q

Q⇒ P . , , 導 , statement

. 前 statement 導 statement, .

2.2. Existence and Uniqueness

Existence , uniqueness . 數

學 . , existence uniqueness .

. , . ,

論 existence uniqueness .

(24)

2.2.1. Existence. existence . constructive

method . nonconstructive method

論 導 , .

數 x 6x2−x−1 = 0. 6x2−x−1 (2x−1)(3x+1)

x = 1/2 ( x =−1/3)6x2− x − 1 = 0. construct

method. 數 f (x) = 6x2− x − 1, f (0) =−1 < 0 f (1) = 4 > 0.

數 數 數 , f (x) = 0 0 < x < 1

, . , x

6x2− x − 1 = 0, nonconstructive method. .

Example 2.2.1. there exists irrational numbers a, b such that ab is rational.

Proof. Constructive Method: a =√

2 b = log29. a 數.

b 數. m, n 數 log23 = n/m.

2m= 3n, 3 數 數, . b = log29 數.

ab= 212log29= 2log23= 3,

數 a, b ab 數.

Nonconstructive Method: a=

2 b=

2. a, b 數.

c = (a)b. c 數, a =√

2, b =√

2 . c 數, a = c, b =√

2,

ab= ( 2

2

)

2= 22= 2.

數 a, b ab 數. 

nonconstructive method

2

2

數.

a = b =√

2 a =√

2

2

, b =√

2 ,

, nonconstructive method.

2

2

數, a =√

2

2

, b =√

2 constructive method.

2

2

數 (

). , , nonconstructive

method .

Question 2.4. , construct method there exists

irrational numbers a, b such that ab is rational.

constructive method ,

, .

, 學 導 ,

. 學 , . 導 ,

, 導 “ ”. , 導 “ ”

, , , , (

(25)

2.2. Existence and Uniqueness 21

P Q ). ,

, . .

Example 2.2.2. 數 x

3− 2x = x − 2?

, 3− 2x = x2− 4x + 4, x2− 2x + 1 = 0. x = 1.

, x = 1. x = 1 , 數

. x = 1 , 1 =−1 . 數 x

3− 2x = x − 2.

nonconstructive method , . 前

數 x 6x2− x − 1 = 0.

, .

, pigeonhole principle ( ). “Dirichlet’s drawer principle”, pigeonhole principle .

Theorem 2.2.3 (Pigeonhole Principle). n 數. n n

. , .

Proof. , constructive method. , statement

,

n n , n

. . 

pigeonhole principle . ,

, . 6 數, 數 5

數 . 6 數 6 , 0 4 . 5

數 0 0 , 數 1 1 , . 數 6

數 5, , . 數

5 數 .

. 16 數, 4

數 5 數. 數 5 數 0, 1, 2, 3, 4 3 ,

數 15 , 16 數 .

Theorem 2.2.3 , .

Theorem 2.2.4. k, n 數. n kn .

, k .

Question 2.5. Theorem 2.2.4

, 數 數 ( ).

數 數 .

數 數 . ,

.

(26)

2.2.2. Uniqueness. 前 .

. , ,

. Example 2.2.2 x x = 1 ,

. , .

. 前 ,

. ,

. R2 .

Example 2.2.5. R2 −→

O R2 −→

V

→V +−→ O =−→

V , −→

O .

(1) : −→

O = (x, y), −→

V = (a, b)∈ R2. −→

O −→

V +−→ O =−→

V , (a, b) + (x, y) = (a + x, b + y) = (a, b). a + x = a, b + y = b, x = 0, y = 0. −→

O , (0, 0).

(2) : −→

O ,−→

Q ∈ R2 −→ O ̸=−→

Q −→

V ∈ R2,

→V +−→ O =−→

V (2.1)

→V +−→ Q =−→

V (2.2)

→Q =−→

V (2.1) −→

Q +−→ O =−→

Q . −→

O =−→

V (2.2)

→O +−→ Q =−→

O . −→

Q +−→ O =−→

O +−→ Q , −→

Q =−→

O . −→

O ̸=−→

Q ,

.

Question 2.6. −→

V ∈ R2 : R2 −→

W

→V +−→ W =−→

O , −→

W .

Example 2.2.5 , −→

O , −→

O = (0, 0).

, −→

O = (0, 0) , . .

. , .

數學 , .

.

Example 2.2.6. 數 r , r3= 3, 數 r .

Proof. Example 2.1.4 , x, yx̸= y, x3̸= y3.

r∈ R , r3= 3 s̸= rs3= 3, Example 2.1.4

3 = s3̸= r3= 3. 數 s s3= 3. 

Example 2.2.6 x̸= y , x, y ,

. . , Example 2.2.6

數 r r3= 3, . ,

數 ( 數 f (x) = x3 ) .

31/3 r3= 3 數 r.

(27)

2.3. Mathematical Induction 23

2.3. Mathematical Induction

“數學 ”. 數學 數

axiom ( ), 論 . 數學

. 數學 , , ,

.

數學 論 axiom ( ). 數學

前, well-ordering principle. ,

前 . well-ordering principle

. , .

well-ordering “ ” ,

數 , .

principle ( ) ! , 數 1 , .

. ,

, .

, 數學 .

Theorem 2.3.1 (Mathematical Induction). statement (1) P(1)

(2) k∈ N P(k) , P(k + 1)

數 n, P(n) .

Proof. 數 n P(n) , .

(1), (2) 數 n, P(n) .

數 n, P(n) , 數 n, P(n) .

P(n) 數 n . , well-ordering

principle , 數 m P(m) . (1) P(1) ,

m̸= 1. m 1 數. m− 1m− 1 < m, m

P(m)P(m− 1) . (2) , P(m− 1) ,

P((m− 1) + 1) = P(m) . P(m) . 數 n,

P(n) , 數 n, P(n) . 

數學 , (1) P(1) , (2) k = 1 ,

P(1) P(2) . k = 2 , P(2) P(3) .

. P(1) . (2) P(k) P(k + 1)

. P(k) , P(k) ,

P(k) P(k + 1) . P(k) P(k + 1)

, 數學 . f (x) = x2+ x + 41.

x = 1 f (1) = 43 數. x = 2, f (2) = 47 數. f (3) = 53, f (4) = 61,

(28)

f (5) = 71 數. x 數 n f (n) 數.

x = 39 數. , f (k)

f (k + 1) 數, 數學 . , x = 40 ,

f (40) = 402+ 40 + 41 = 40(40 + 1) + 41 41 , 數.

數學 .

Example 2.3.2. a, b 數, 數學 : 數 n

an− bn a− b 數.

Proof. an− bn (a− b)(an−1+ an−2b +··· + bn−1), an− bn a− b

數. 數學 . n = 1 a− b.

a− b 數, . ak− bk a− b 數, ak+1− bk+1

a− b 數. ak+1− bk+1 ak− bk . ak+1− bk+1

ak− bk ,

ak+1− bk+1= aak− bbk= aak− abk+ abk− bbk= a(ak− bk) + (a− b)bk.

ak− bk a− b 數, ak− bk (a− b)m, m 數.

ak+1− bk+1= a(a− b)m + (a − b)bk= (a− b)(am + bk). ak+1− bk+1 a− b 數.

數學 , 數 n, an− bn a− b 數 

, 數學 , . P

Q , 前 2.1 . P(k)

P(k + 1) , P(1), P(2) , P(2), P(3) , . P(k)

P(k + 1) . , P(k) P(k + 1),

. .

Example 2.3.3. 數學 n 數 . 論

, 論 .

: 數, .

: k 數 , k + 1 數 . k + 1

數, 數 a, k 數 . k

b. 數, 數 a . k

, a = b. 數學 , n 數 .

. 數 k− 1 數 .

k = 1 , , 數 a 數 ,

a = b.k≥ 2 , P(k) P(k + 1) , k = 1

P(k) P(k + 1) . 數學 數 k,

P(k) , P(k + 1) . 論 .

(29)

2.3. Mathematical Induction 25

n = 1 , n≥ 5 , 2n> n2. 數學

1 , . , Theorem 2.3.1 論,

數學 .

Corollary 2.3.4 (Extended Mathematical Induction). m 數. state- ment

(1) P(m)

(2) k≥ mP(k) , P(k + 1)

m 數 n P(n) .

Proof. Q(n) = P(m + n− 1). P(m) , Q(1) = P(m) . k∈ N

Q(k) , m + k− 1 ≥ m 數, P(m + k− 1) = Q(k) , (2)

P(m + k) = Q(k + 1) . , k∈ N Q(k) , Q(k + 1) . Theorem

2.3.1 n∈ N, Q(n) = P(m + n − 1) . n m 數 ,

P(n) . 

“extended mathematical induction” Corollary , Theo-

rem 2.3.1 . m = 1 Corollary 2.3.4 Theorem 2.3.1,

Theorem 2.3.1 Corollary 2.3.4 equivalent . Example 2.3.5. 數 n, n≥ 5 , 2n> n2.

Proof. extended mathematical induction m = 5 P(n) 2n> n2 . n = 5 , 25= 32 > 25 = 52, P(5) . k≥ 5 數 2k> k2. 2k+1= 2× 2k,

2k > k2 2k+1 > 2k2. (k + 1)2= k2+ 2k + 1 2k2> k2+ 2k + 1, 2k+1> (k + 1)2, P(k + 1) . 2k2 > k2+ 2k + 1 k2− 2k > 1, k2− 2k = k(k − 2), k≥ 5 k2− 2k > 1. k≥ 5P(k) , P(k + 1) , extended mathematical induction (Corollary 2.3.4)

5 數 n P(n), 2n> n2 . 

數學 P(k) P(k + 1) .

數 , 前 . P(1)

P(2) , P(2) P(3) , P(1) , P(2)

前 , P(1) . P(3) P(4) , P(1), P(2)

, 數學 .

Corollary 2.3.6 (Strong Mathematical Induction). m 數. statement

(1) P(m)

(2) k≥ mP(m), P(m + 1), . . . , P(k− 1),P(k) , P(k + 1)

(30)

m 數 n P(n) .

Proof. m 數 n, Q(n) = P(m)∧P(m+1)∧···∧P(n−1)∧P(n). P(m) , Q(m) = P(m) . k≥ mQ(k) , P(m), . . . , P(k−1),P(k)

, (2) P(k + 1) . P(m), P(m + 1), . . . , P(k− 1),P(k) , Q(k + 1) = P(m)∧ P(m + 1) ∧ ··· ∧ P(k) ∧ P(k + 1) . , k≥ m

Q(k) , Q(k + 1) . Corollary 2.3.4 m 數 n

Q(n) . Q(n) P(m), P(m + 1), . . . , P(n− 1),P(n) , P(n)

, n m 數 , P(n) . 

Corollary 2.3.4 Corollary 2.3.6. P(k)⇒ P(k + 1) P(m), P(m + 1), . . . , P(k− 1),P(k) ⇒ P(k + 1) ,

Corollary 2.3.6 Corollary 2.3.4. strong mathematical induction extended mathematical induction .

Question 2.7. Corollary 2.3.6 Corollary 2.3.4.

前 extended mathematical induction mathematical induction

, 數學 .

. strong mathematical induction .

Example 2.3.7. 1 數 數 .

學 . n 1 數, n 數, n

數 . n 數, n n 1 數 ,

數 .

. , “ ”

( 數 ) . 數學 ,

. , k

, k + 1 數 , strong mathematical

induction .

Proof. n = 2 , 2 數, . k≥ 2 i = 2, 3, . . . , k, i

數 . k + 1 . k + 1 數 ,

k + 1 數 . k + 1 = ab, 1 < a, b≤ k.a, b

數 , k + 1 = ab 數 . strong

mathematical induction 1 數 數 . 

數學 , P(k)

( P(m), P(m + 1), . . . , P(k) ) P(k + 1) . 導 k

. Example 2.3.3 , “ k

k + 1 數 ” k≥ 2 . k = 1 ,

(31)

2.3. Mathematical Induction 27

( Example 2.3.3 ).

, k , k ,

, . , 數學 ,

, .

Example 2.3.8. Fibonacci sequence{F0, F1, F2, . . .}, F0= 0, F1= 1 i≥ 2, Fi Fi= Fi−1+ Fi−2. Fn< 2n−2, for n≥ 4.

, Fk+1 Fk Fk−1 , Fk Fk+1.

strong mathematical induction . F2= F1+ F0= 1, F3= F2+ F1= 1 + 1 = 2, n = 4 , F4= F3+ F2 = 2 + 1 = 3, F4= 3 < 24−2= 4 . k≥ 4

4≤ i ≤ k, Fi < 2i−2. Fk+1 = Fk+ Fk−1. Fk < 2k−2 Fk−1< 2(k−1)−2= 2k−3 Fk+1< 2(k+1)−2= 2k−1. k = 4 , i = k− 1

4≤ i ≤ k, Fk−1< 2k−3 ( Fk−1= F3= 2 = 24−3).

k = 4 , Fk+1= F5= F4+ F3= 5 < 25−2= 8, . Proof. F4= 3 < 24−2, F5= 5 < 25−2.

k≥ 5 i = 4, 5, . . . , k Fi< 2i−2. 4≤ k − 1 ≤ k 4≤ k ≤ k, Fk< 2k−2, Fk−1< 2(k−1)−1= 2k−3,

Fk+1= Fk+ Fk−1< 2k−2+ 2k−3= 2k−3(2 + 1) < 4× 2k−3= 2k−1= 2(k+1)−2.

數學 Fn< 2n−2, for n≥ 4. 

, 20 數 4 5 數 .

n > 20, 數 l, m n = 4l + 5m. 學 1 = 5− 4,

k = 4l + 5m, k + 1 = 4l + 5m + (5− 4) = 4(l − 1) + 5(m + 1). ,

數 4 數 5 數 , 4 5 數

. , k = 4l + 5m, k + 4 = 4(l + 1) + 5m,

21, 22, 23, 24 4 5 數 , 數學

.

Example 2.3.9. nn > 20, l, mn = 4l + 5m.

前 , n≥ 0, 21 + 4n, 22 + 4n, 23 + 4n, 24 + 4n

4l + 5m, l.m 數 . 20 數 .

21 = 4× 4 + 5 × 1, . k≥ 0 21 + 4k = 4l + 5m, l.m 數.

21 + 4(k + 1) = (21 + 4k) + 4 = 4l + 5m + 4 = 4(l + 1) + 5m, . n≥ 0 數 ,

21 + 4n 4l + 5m, l.m 數 . 22 = 4× 3 + 5 × 2,

23 = 4× 2 + 5 × 3 24 = 4× 1 + 5 ×4, 數學 . 數學

, strong mathematical induction.

Proof. 21 = 4× 4 + 5 × 1, 22 = 4 × 3 + 5 × 2, 23 = 4 × 2 + 5 × 3 24 = 4× 1 + 5 × 4

n = 21, 22, 23, 24 . k≥ 24 21≤ i ≤ k 數 i,

(32)

數 l, m i = 4l + 5m. k + 1 , k + 1 = (k− 3) + 4, i = k− 3 21≤ i ≤ k, 數 l, m k− 3 = 4l + 5m, k + 1 = 4l + 5m + 4 = 4(l + 1) + 5m.

數學 , n 20 數, l, mn = 4l + 5m. 

Question 2.8. 數 4 數 5 數 .

數學 數學 . 數 ,

數 數學 . 數 ,

數 數學 . 數 , row

數 column 數 數學 .

(33)

Chapter 3

Set

論 數學 論 .

論. 論, .

3.1. Basic Definition

, .

數學 , .

, . ( set)

, , ( element).

set, A, B, S , set . 數學

. : N 數 , Z 數

,Q 數 , 數 R . x

S , x∈ S , x belongs to S ( x S). x

S , x̸∈ S .

數學 , set element element.

S, x, x∈ S . ,

, . S ={1,2,3}

3 , 1, 2 3. S , 1∈ S,

4̸∈ S. , set-builder notation

. {x : P(x)} , : x

x , : P(x) x P(x).

{x : P(x)} P(x) x .

前, , .

Definition 3.1.1. A, B . B element A element, B A

subset ( ), B is contained in ( ) A, B⊆ A. B⊆ A A⊆ B,

A, B equal, A = B. B⊆ A B̸= A, B A proper subset, B⊂ A.

29

(34)

subset proper set “⊆”⊂”, , .

B⊆ A, B x, A , 數學

“x∈ B ⇒ x ∈ A”. A = B “x∈ B ⇔ x ∈ A”.

, , ,

. :

Example 3.1.2. A ={1,2,2}, B = {1,2,3}, C = {3,3,1,2}, D = {n ∈ N : 1 ≤ n ≤ 3}, E ={2,4}.

A 1, 2 , 1∈ B 2∈ B, A⊆ B. 3∈ B 3̸∈ A, B

A, A⊂ B. B = C.

x∈ B, x∈ N 1≤ x ≤ 3, x∈ D. B⊆ D. , x∈ D

x∈ N 1≤ x ≤ 3, x = 1, 2, 3 B , D⊆ B, B = D.

1∈ B 1̸∈ E, B E subset. , 4∈ E 4̸∈ B, E

B subset.

A, B sets, B A subset , B* A . B⊆ A

A* B, B⊂ A.

Question 3.1. P(x), Q(x) statement form. P ={x : P(x)} Q ={x : Q(x)}

:

(1) P⊆ Q P(x)⇒ Q(x).

(2) P = Q P(x)⇔ Q(x).

, . ,

subset , universal set (

). 論 數, R universal set.

x∈ R . universal set

, a, b 數 , universal set Q 論 ax + b = 0 . 論

ax2+ b = 0, universal set R 數 C . ,

, universal set .

universal set , 論 set universal set subset.

empty set ( ). ,

/0 . /0 ?

, “ x∈ /0 ” .

operations, /0

. universal set empty set, .

Proposition 3.1.3. X universal set A set. A⊆ X /0⊆ A.

(35)

3.1. Basic Definition 31

Proof. X universal set, A X subset, A⊆ X. , /0⊆ A

x∈ /0 x∈ A. x∈ /0 , P P⇒ Q

“x∈ /0 ⇒ x ∈ A” /0⊆ A. 

Question 3.2. Question X universal set. universal set ?

empty set ?

數學 , ,

論 subset .

Proposition 3.1.4. A, B,C sets, .

(1) A⊆ A.

(2) A⊆ B B⊆ C, A⊆ C.

Proof. (1) x∈ A, x∈ A, A⊆ A.

(2) x∈ A, A⊆ B x∈ B. B⊆ C x∈ C. 言 , x∈ A x∈ C,

A⊆ C. 

Question 3.3. Proposition 3.1.4 A = B B = C, A = C.

Question 3.4. A, B,C sets, ?

(1) A⊂ B B⊆ C, A⊆ C.

(2) A⊆ B B⊆ C, A⊂ C.

(3) A⊂ B B⊂ C, A⊆ C.

(4) A⊂ B B⊆ C, A⊂ C.

, A = B A⊆ B B⊆ A .

, 數 , 學

. .

Example 3.1.5. A ={(x,y) ∈ R2: x2− x = y = 2} B ={(2,2),(−1,2)}. A = B.

Proof. (x, y)∈ A, x2− x = 2 y = 2, x = 2 x =−1 y = 2.

(x, y)∈ A, (x, y) = (2, 2) (x, y) = (−1,2). x∈ B, A⊆ B. (x, y)∈ B, (x, y) = (2, 2) (x, y) = (−1,2) x2−x = y = 2, (x, y)∈ A. B⊆ A,

A = B 

Question 3.5. A ={x ∈ R :√

x = x− 2}, B = {1}, C = {4}, D = {1,4}. A, B,C, D .

Venn diagrams . ,

universal set, ( )

set. X set A.

(36)

..

A .

X

Venn diagrams A, B .

A B.... X

. A

. B

.

X

. A

.

B .

X

A, B , A, B

, A⊆ B.

Venn diagrams ,

. Proposition 3.1.4 (2) A⊆ B B⊆ C, A⊆ C

.

A...

B .

C .

X

Venn diagrams , .

Question 3.6. A, B,C sets. A⊆ B. B C ,

Venn diagrams. A C ? B C ,

Venn diagrams, A C ? , A,C

Venn diagrams, B,C .

∈” ( ) “⊆” ( ) . “∈”

, “⊆” . A⊆ B B⊆ C A⊆ C

, A∈ B B∈ C A∈ C.

A ={1}, B ={ {1}}

, C ={{

{1}}}

.

A∈ B B∈ C, A̸∈ C.

(37)

3.2. Set Operations 33

3.2. Set Operations

set operation, .

operations, intersection, union set difference, set

operations .

3.2.1. Intersection and Union. intersection union.

Definition 3.2.1. A, B sets. A∩B = {x : x ∈ A and x ∈ B} the intersec- tion of A and B (A B ). A∪ B = {x : x ∈ A or x ∈ B} the union of A and

B (A B ).

A∩ B A, B , A∪ B A, B

. .

Example 3.2.2. A ={1,2,3}, B = {2,4,6}. 2 A B,

A∩ B = {2}. 1, 3 B A, A B 1, 3

A∪ B. 4, 6 A∪ B. 2 A B A

B , 2 A∪ B.A B ,

A∪ B = {1,2,3,4,6}.

. A∩ B = {2} ⊆ A =

{1,2,3} B ={2,4,6} ⊆ A ∪ B = {1,2,3,4,6}. , x∈ A ∩ B, x∈ A x∈ B,

x A x B,

(A∩ B) ⊆ A and (A ∩ B) ⊆ B. (3.1)

A∩ B , A, B disjoint. ,

A, B disjoint . x∈ A, x A B, x∈ A∪B

.

A⊆ (A ∪ B) and B ⊆ (A ∪ B) (3.2)

Question 3.7. (A∩ A) = A (A∪ A) = A.

, .

Proposition 3.2.3. A, B,C, D sets A⊆ B C⊆ D.

(A∩C) ⊆ (B ∩ D) and (A ∪C) ⊆ (B ∪ D).

Proof. A⊆ B, x∈ A x∈ B. C⊆ D, x∈ C x∈ D. x∈ A ∩C, x∈ A x∈ C. x∈ B x∈ D. (A∩C) ⊆ (B ∩ D). , x∈ A ∪C,

x∈ A x∈ C. x∈ A x∈ B, x∈ C x∈ D. x∈ A ∪C

x∈ B ∪ D. (A∪C) ⊆ (B ∪ D). 

(38)

, A⊆ B A⊆ D , C = A Proposition 3.2.3 (A∩ A) ⊆ (B ∩ D). (A∩ A) = A, A⊆ (B ∩ D). , A⊆ B C⊆ B ,

(A∪C) ⊆ (B ∪ B). (B∪ B) = B, (A∪C) ⊆ B. .

Proposition 3.2.3 導 , corollary ( ) .

Corollary 3.2.4. A, B,C, D, E sets.

(1) A⊆ B A⊆ C, A⊆ (B ∩C).

(2) D⊆ A E⊆ A, (D∪ E) ⊆ A.

Question 3.8. Corollary 3.2.4,Proposition 3.2.3.

. .

Proposition 3.2.5. A, B sets. equivalent.

(1) A⊆ B.

(2) (A∩ B) = A.

(3) (A∪ B) = B.

Proof. (1)⇔ (2) (1)⇔ (3).

(1)⇔ (2): A⊆ B, (A∩ B) = A. (3.1) (A∩ B) ⊆ A,

A⊆ (A ∩ B). A⊆ A A⊆ B, Corollary 3.2.4 A⊆ (A ∩ B).

(1)⇒ (2). , (3.1) (A∩ B) ⊆ B. A = (A∩ B)

A⊆ B, (2)⇒ (1).

(1)⇔ (3): A⊆ B, (A∪ B) = B. (3.2) B⊆ (A ∪ B),

(A∪ B) ⊆ B. A⊆ B B⊆ B, Corollary 3.2.4, (A∪ B) ⊆ B.

(1)⇒ (3). , (3.2) A⊆ (A ∪ B). (A∪ B) = B

A⊆ B, (3)⇒ (1). 

Definition 3.2.1 “ ” “and” , “ ” “or” .

: (1) A∩ B = B ∩ A.

(2) A∪ B = B ∪ A.

(3) (A∩ B) ∩C = A ∩ (B ∩C).

(4) (A∪ B) ∪C = A ∪ (B ∪C).

(3) , ,

A∩ B ∩C. (4), ,

A∪ B ∪C.

(39)

3.2. Set Operations 35

∧,∨ ,

((P∧ Q) ∨ R) ∼ ((P ∨ R) ∧ (Q ∨ R)), ((P ∨ Q) ∧ R) ∼ ((P ∧ R) ∨ (Q ∧ R)), .

Proposition 3.2.6. A, B,C sets,

((A∩ B) ∪C) = (A ∪C) ∩ (B ∪C), ((A ∪ B) ∩C) = (A ∩C) ∪ (B ∩C).

Proof. (A∩ B) ⊆ A C⊆ C Proposition 3.2.3 ((A∩ B) ∪C) ⊆ (A ∪C).

((A∩B)∪C) ⊆ (B∪C). Corollary 3.2.4 ((A∩B)∪C) ⊆ (A∪C)∩(B∪C).

x∈ (A∪C)∩(B∪C) x∈ A∪C x∈ B∪C. proof in cases, x∈ C

x̸∈ C . x∈ C, x∈ (A∩B)∪C. x̸∈ C, x∈ A∪C x∈ B∪C,

x∈ A x∈ B, x∈ A ∩ B. x∈ (A ∩ B) ∪C. ,

x∈ (A ∪C) ∩ (B ∪C) x∈ (A ∩ B) ∪C, ((A∪C) ∩ (B ∪C)) ⊆ (A ∩ B) ∪C.

((A∩ B) ∪C) = (A ∪C) ∩ (B ∪C).

((A∪ B) ∩ C) = (A ∩ C) ∪ (B ∩ C) , A⊆ (A ∪ B) C⊆ C Proposition 3.2.3 (A∩ C) ⊆ ((A ∪ B) ∩ C), (B∩ C) ⊆ ((A ∪ B) ∩ C).

Corollary 3.2.4 (A∩C)∪(B∩C) ⊆ ((A∪B)∩C). , x∈ (A∪B)∩C, x∈ A∪B

x∈C. x∈ A∪B, x∈ A x∈ B. x∈ A , x∈ C, x∈ A∩C.

x∈ (A∩C)∪(B∩C). , x∈ B , x∈ B∩C. x∈ (A∩C)∪(B∩C),

((A∪ B) ∩C) ⊆ (A ∩C) ∪ (B ∩C). ((A∪ B) ∩C) = (A ∩C) ∪ (B ∩C)  Question 3.9. Proposition 3.2.5 (1)⇒ (2) Proposition 3.2.6 Proposition 3.2.5 (2)⇒ (3).

3.2.2. Set Difference. set difference.

Definition 3.2.7. A, B sets, A\ B = {x : x ∈ A and x ̸∈ B}, the set difference of B in A (B A ). X universal set, Ac= X\ A = {x : x ̸∈ A}

the complement of A (A ).

Ac {x : x ∈ X and x ̸∈ A}, X universal set,

X , x∈ X x̸∈ A.

, . Q , Qc= /0, R ,

Qc 數 .

, A\B = A∩Bc, A\B B\A

. (A\ B)∩ (B \ A) = /0. A∩ Ac= /0 B∩ Bc= /0,

(A\ B) ∩ (B \ A) = (A ∩ Bc)∩ (B ∩ Ac) = (A∩ Ac)∩ (B ∩ Bc) = /0.

Example 3.2.8. X ={1,2,3,4,5,6},A = {1,2,3},B = {2,4,6}. 1, 3∈ A 1̸∈ B 3̸∈ B, 1, 3∈ A \ B. 2∈ A 2∈ B, 2̸∈ A \ B. A\ B = {1,3}.

參考文獻

相關文件

A cylindrical glass of radius r and height L is filled with water and then tilted until the water remaining in the glass exactly covers its base.. (a) Determine a way to “slice”

 Definition 5.4.4 cardinal number partial order... Equivalent Sets and Cardinal

3: Calculated ratio of dynamic structure factor S(k, ω) to static structure factor S(k) for &#34;-Ge at T = 1250K for several values of k, plotted as a function of ω, calculated

Lemma 4.5.. Then, the proof is complete.. By Theorem 4.1 and Theorem 4.6, the conclusion is drawn. Baes, Convexity and differentiability properties of spectral functions and

It is well known that the Fréchet derivative of a Fréchet differentiable function, the Clarke generalized Jacobian of a locally Lipschitz continuous function, the

By this, the second-order cone complementarity problem (SOCCP) in H can be converted into an unconstrained smooth minimization problem involving this class of merit functions,

effective price of choice in training: (wishfully) growth function m H (N) with a break point Lecture 6: Theory of Generalization. Restriction of

– It is not hard to show that calculating Euler’s phi function a is “harder than” breaking the RSA. – Factorization is “harder than” calculating Euler’s phi function (see