• 沒有找到結果。

數學導論

N/A
N/A
Protected

Academic year: 2022

Share "數學導論"

Copied!
27
0
0

加載中.... (立即查看全文)

全文

(1)

數學導論

學數學

(2)

學 學 數學 學 數學 . 學數學

論 . 學 , .

(Logic), (Set) 數 (Function) . , 學

論. 論 學 數學 .

, ,

. , .

, . , 論

, . , .

v

(3)

Chapter 5

Function

function ( 數). Function 數學 學 數

學 . 數 . ,

, 數 . 數 ,

數 , 論 數, 數. ,

, 論 .

數 , , 論 數

學 數. , 數 , .

數, 數.

數 .

5.1. Basic Definition

nonempty sets X,Y . function X ,Y

relation. relation, X Y ,

X Y , “function”.

f ⊆ X ×Y X Y relation, ?

, x∈ X, y∈ Y

(x, y)∈ f . , ,

, ? , x∈ X, y∈ Y

(x, y)∈ f . 數學 (x, y)∈ f (x, y)∈ f , y = y.

function :

Definition 5.1.1. X ,Y nonempty sets f⊆ X ×Y, from X to Y relation.

f , f from X to Y function ( 數). function

mapping map ( ).

(1) x∈ X, y∈ Y (x, y)∈ f .

(2) x∈ X, y,y∈ Y (x, y)∈ f (x, y)∈ f , y = y.

69

(4)

relation function “ ” ,

f : X → Y, f X Y function. x∈ X,

f (x) = y x f “ ” y . f (x) = y

(x, y)∈ f . f function f

function, (1), (2) ( Example 5.1.2).

f : X→ Y . f : X→ Y, f

, .

X ,Y . X f domain ( ),

. Y f codomain ( ), “ ”

. “ ” , function

Y X .

function “well-defined function”,

function ( ). , “well-defined”

, function well-defined.

Example 5.1.2. relations, well-defined function.

(A) X ={x ∈ R : x ≥ 0}, Y = R relation f ⊆ X ×Y f ={(x,y) ∈ X ×Y :

y2= x}. relation f function (1), x∈ X, x≥ 0,

y =√

x, y∈ Y = R y2=

x2= x. x∈ X, y∈ Y (x, y)∈ f . f (2). 12= (−1)2= 1, (1, 1)∈ f (1,−1) ∈ f .

f function.

(B) X ={x ∈ R : x ≥ 0}, Y = {y ∈ R : y ≤ 0} relation f ⊆ X × Y f ={(x,y) ∈ X ×Y : y2= x}. relation f function (1) ,

x∈ X, x≥ 0, y =−√

x, y∈ R y≤ 0, y∈ Y. y2=

x2= x,

x∈ X, y∈ Y (x, y)∈ f . f (2). x∈ X, y,y∈ Y

(x, y)∈ f (x, y)∈ f , y2= x = y′2. (y− y)(y + y) = 0, y = y y =−y. x = 0, y = y= 0. x̸= 0, y̸= 0 y̸= 0, y, y∈ Y,

y < 0 y< 0. y =−y , y = y. f : X→ Y function.

(C) (B) X X =R, f ={(x,y) ∈ X ×Y : y2= x} function.

−1 ∈ X, y∈ Y ⊆ R y2=−1. y∈ Y (−1,y) ∈ f .

f (1), f function. , (B) Y

Y ={y ∈ R : y < 0}, f ={(x,y) ∈ X ×Y : y2= x} function. 0∈ X,

y∈ Y y2= 0, y∈ Y (0, y)∈ f . f function.

(D) X =R, Y = P(R) function f : X → Y x∈ X,

f (x) ={y ∈ R : y2= x}.

f well-defined function. x∈ X = R, x

x > 0, x = 0, x < 0 . x > 0 , f (x) ={√x,−√x} R subset,

Y =P(R) . x = 0 , f (0) ={0}, Y =P(R) .

(5)

5.1. Basic Definition 71

x < 0 , f (x) = /0, Y =P(R) . x∈ X,

R subset A∈ Y (x, A)∈ f . , x < 0 , f (x) = /0,

, /0∈ Y (x, /0)∈ f . y∈ Y, (x, y)∈ f , f

(1). f (2). , x∈ X,

R subset A f (x) = A. , x > 0, f (x) {√

x,−√x}

Y . (x,{√

x,−√

x}) ∈ f ; (x,√

x)∈ f (x,−√ x)∈ f .

f (2) .

Example 5.1.2 , ,

, 數. , 數 f : X→ Y f: X→ Y

X = X, Y = Y x∈ X, f (x) = f(x) , f f

數. Example 5.1.2 (D) , f

. 數 . 數 ,

數 .

數 . 論 數 , 論 .

數 , 數, identity function. ,

數. :

Definition 5.1.3. X nonempty set. idX : X → X, idX(x) = x, ∀x ∈ X. idX

function, the identity function on X.

Question 5.1. f : X → X function. f relation on X.

f : X→ X identity function? f identity

function, X ={1,2} , f identity function.

(1) f is reflexive.

(2) f is symmetric.

(3) f is transitive.

數, 數 . 數 f : X → Y,

X Y , “ ” 數. ,

數 . , X nonempty subset X,

f|X : X→ Y, 數. f|X : x∈ X, f|X(x) = f (x).

f|X f X subset, f .

f X Y function f|X X Y function. f|X the restriction of f to X. Example 5.1.2 (B) , X={x ∈ R : x > 1},

f|X : X→ Y, function. function . ,

. , 數

. ,

( Example 5.1.2 (C) ). Example 5.1.2 (D) , Y={A ∈ P(R) : #(A) ≤ 2}, f : X→ Y function.

(6)

f : X→ Y g : Y → Z functions, f , g X Z function, g◦ f : X → Z. g ◦ f : x∈ X, g ◦ f (x) = g( f (x)). g◦ f (x) Z

x f f (x) Y , f (x) g Z

g( f (x)). x7−→ f (x)f 7−→ g( f (x)).g g◦ f : X → Z function.

(1): x∈ X, f : X → Y function y∈ Y f (x) = y.

y, g : Y→ Z function, z∈ Z, g(y) = z. z∈ Z,

g◦ f (x) = g( f (x)) = g(y) = z. (2), x∈ X z∈ Z

g◦ f (x) = z. f : X→ Y function, x∈ X, y∈ Y f (x) = y.

z, z∈ Z g◦ f (x) = z g◦ f (x) = z, g◦ f (x) = g( f (x)) = g(y),

z, z∈ Z g(y) = z g(y) = z. g : Y → Z function ,

z = z. g◦ f : X → Z 數, 數 f g composite function

( 數). 數 composition.

, 數 , 數 數

. 數 數 ,

. , 數 , ,

數 數 . 數 .

, 數 . x f f (x),

f (x) g g( f (x)). 數 數 ,

, .

Example 5.1.4. X ={1,2,3}, Y = {a,b,c,d}, Z = {α,β,γ}. f : X → Y : f (1) = a, f (2) = a, f (3) = c g : Y → Z : g(a) =γ,g(b) = β,g(c) = γ,g(d) = α, g◦ f : X → Z : g◦ f (1) = g( f (1)) = g(a) =γ, g ◦ f (2) = g( f (2)) = g(a) = γ, g◦ f (3) = g( f (3)) = g(c) =γ.

identity function 數, 數 ,

“ ”, 數 . .

Lemma 5.1.5. f : X→ Y function. X identity function idX : X→ X

Y identity function idY: Y → Y, :

f◦ idX = f , idY◦ f = f .

Proof. f◦ idX f . idX : X → X

f : X → Y, 數 , f◦ idX : X → Y. x∈ X,

f◦ idX(x) = f (idX(x)) = f (x). f◦ idX = f .

idY◦ f f . f : X→ Y idY: Y → Y,

數 , idY◦ f : X → Y. x∈ X, idY◦ f (x) = idY( f (x)).

f (x)∈ Y, idY( f (x)) = f (x). idY◦ f = f . 

(7)

5.2. Image and Inverse Image 73

composition . f : X→ Y g : Y → Z functions,

g◦ f f◦ g. , Z̸= X , f◦ g ( ),

. Z = X g◦ f f◦ g .

Question 5.2. X ={1,2}, f : X→ X, g : X → X g◦ f ̸= f ◦ g.

composition , composition .

.

Proposition 5.1.6. X ,Y, Z,W nonempty sets. f : X → Y, g : Y → Z h : Z→ W functions,

h◦ (g ◦ f ) = (h ◦ g) ◦ f .

Proof. h◦ (g ◦ f ) (h◦ g) ◦ f .

g◦ f : X → Z, h◦ (g ◦ f ) : X → W. h◦ (g ◦ f ) X , W .

h◦ g : Y → W, (h◦ g) ◦ f : X → W. (h◦ g) ◦ f X , W .

, x∈ X h◦ (g ◦ f )(x) = (h ◦ g) ◦ f (x). h◦ (g ◦ f )(x) g◦ f (x) h h((g◦ f )(x)). g◦ f (x) = g( f (x)),

h◦ (g ◦ f )(x) = h((g ◦ f )(x)) = h(g( f (x))).

h◦ (g ◦ f )(x) x f f (x), g g( f (x)),

h h(g( f (x))). (h◦g)◦ f (x) f (x) h◦g (h◦g)( f (x)).

(h◦ g)( f (x)) f (x) g g( f (x)) h,

(h◦ g) ◦ f (x) = (h ◦ g)( f (x)) = h(g( f (x))).

h◦ (g ◦ f ) (h◦ g) ◦ f 數. 

數 , 數 , .

5.2. Image and Inverse Image

前 數 數 ,

數 . 數

, image . , ,

, inverse image .

數學 , image inverse image 數 論 .

, function f : X→ Y X subset A, A f

image A f . .

Definition 5.2.1. f : X → Y function A⊆ X. f (A) ={ f (a) : a ∈ A}, f (A) the image of A under f . , the image of X under f , f (X ) f range ( ).

(8)

f (A) , f (A) Y subset. ,

. , (

Example 5.2.2). , 學 f (a)∈ f (A) a∈ A.

, b̸∈ A f (b)∈ f (A). ,

f (A) Y . y∈ f (A), a∈ A y = f (a).

, y∈ A a∈ A y = f (a) y∈ f (A). f (A)

f (A) ={y ∈ Y : ∃a ∈ A,y = f (a)}.

, f (A) . .

Example 5.2.2. X =R \ {3}, f : X → R f (x) = (x + 1)/(x− 3), ∀x ∈ X.

, f well-defined function. f range, f (X ). ,

f (X ) ={(x + 1)/(x − 3) : x ∈ X}, f (X ) .

, y∈ f (X), y∈ R x∈ X y = f (x) = (x + 1)/(x− 3).

y 數, y = (x + 1)/(x− 3) X . y

數, x 數, y(x− 3) = x + 1 (y− 1)x = 3y + 1, x = (3y + 1)/(y− 1).

, , y∈ R x∈ X y = (x + 1)/(x− 3),

x = (3y + 1)/(y− 1). x , x .

x f (x) = y.

x = (3y + 1)/(y− 1), y̸= 1. y = 1, x∈ X

1 = (x + 1)/(x− 3), x + 1 = x− 3, 1 =−3 . y̸= 1, x = (3y + 1)/(y− 1),

x + 1 x− 3=

3y+1y−1 + 1

3y+1 y−1 − 3=

y−14y y−14

=4y 4 = y.

, y̸= 1 , x = (3y + 1)/(y− 1) ∈ R (x + 1)/(x− 3) = y.

x̸= 3, x∈ X. x = (3y + 1)/(y− 1) = 3, 3y + 1 = 3y− 3,

1 =−3 , x∈ X. , y̸= 1 , x∈ X y = f (x).

y = 1 x∈ X y = f (x). f (X ) =R \ {1}.

, image .

Lemma 5.2.3. f : X→Y function A, B X subsets. A⊆ B, f (A)⊆ f (B).

Proof. , y∈ f (A), a∈ A, y = f (a). A⊆ B, a∈ B.

a∈ B y = f (a), y∈ f (B). f (A)⊆ f (B). 

X subsets A, B, A⊆ A∪B B⊆ A∪B. Lemma 5.2.3,

f (A)⊆ f (A ∪ B) f (B)⊆ f (A ∪ B). Corollary 3.2.4, f (A)∪ f (B) ⊆ f (A ∪ B).

, y∈ f (A∪B), x∈ A∪B, y = f (x). , x∈ A, y = f (x)∈ f (A),

(9)

5.2. Image and Inverse Image 75

x∈ B, y = f (x)∈ f (B). y∈ f (A) y∈ f (B). y∈ f (A) ∪ f (B),

f (A∪ B) ⊆ f (A) ∪ f (B). .

Proposition 5.2.4. f : X→ Y function A, B X subsets.

f (A)∪ f (B) = f (A ∪ B).

, A∩ B ⊆ A A∩ B ⊆ B, Lemma 5.2.3, f (A∩ B) ⊆ f (A) f (A∩B) ⊆ f (B). Corollary 3.2.4, f (A∩B) ⊆ f (A)∩ f (B). f (A)∩ f (B)

f (A∩B). y∈ f (A)∩ f (B), y∈ f (A) y∈ f (B), a∈ A

b∈ B y = f (a) y = f (b). a = b, a∈ A∩B.

數 f :{1,2} → {0} f (1) = f (2) = 0. A ={1}, B = {2}, A∩ B = /0, f (A∩ B) = /0. f (A) = f (B) ={0} f (A)∩ f (B) = {0}. f (A)∩ f (B)

f (A∩ B). f (A∩ B) ⊆ f (A) ∩ f (B) .

, f (A\ B) f (A)\ f (B) . y∈ f (A) \ f (B),

a∈ A y = f (a) y̸∈ f (B). a∈ B, y = f (a)∈ f (B) . a∈ A \ B, y = f (a)∈ f (A \ B). f (A)\ f (B) ⊆ f (A \ B). ,

y∈ f (A \ B), a∈ A \ B. (A\ B) ⊆ A, f (a)∈ f (A).

a̸∈ B, y = f (a)̸∈ f (B), b∈ B f (a) = f (b).

f :{1,2} → {0} f (1) = f (2) = 0 . A ={1},B = {2}, A\ B = A, f (A\ B) = f (A) = {0}. f (A) = f (B) ={0}, f (A)\ f (B) = /0. f (A\ B)

f (A)\ f (B). f (A)\ f (B) ⊆ f (A \ B) .

Question 5.3. X , A⊆ X f : X → X function. f (Ac)⊆ f (A)c

? f (A)c⊆ f (Ac) ?

, inverse image. , function f : X→ Y

Y subset C, C f inverse image f C

. .

Definition 5.2.5. f : X→ Y function C⊆ Y. f−1(C) ={x ∈ X : f (x) ∈ C}, f−1(C) the inverse image of C under f .

f−1(C) , f−1(C) X subset. inverse image

, inverse image .

, , inverse image image .

Proposition 5.2.6. f : X→ Y function C, D Y subsets.

(1) C⊆ D, f−1(C)⊆ f−1(D).

(2) f−1(C∪ D) = f−1(C)∪ f−1(D).

(3) f−1(C∩ D) = f−1(C)∩ f−1(D).

(10)

(4) f−1(C\ D) = f−1(C)\ f−1(D).

Proof. (1) x∈ f−1(C), f (x)∈ C. C⊆ D, f (x)∈ D, x∈ f−1(D).

f−1(C)⊆ f−1(D).

(2) C⊆C∪D D⊆C∪D, (1) f−1(C)⊆ f−1(C∪D) f−1(D)⊆ f−1(C∪D).

Corollary 3.2.4 f−1(C)∪ f−1(D)⊆ f−1(C∪ D). , x∈ f−1(C∪ D), f (x)∈ C ∪ D, f (x)∈ C f (x)∈ D. x∈ f−1(C) x∈ f−1(D),

x∈ f−1(C)∪ f−1(D). f−1(C∪ D) ⊆ f−1(C)∪ f−1(D), f−1(C∪ D) = f−1(C)∪ f−1(D).

(3) C∩D ⊆C C∩D ⊆ D, (1) f−1(C∩D) ⊆ f−1(C) f−1(C∩D) ⊆ f−1(D).

Corollary 3.2.4 f−1(C∩ D) ⊆ f−1(C)∩ f−1(D). , x∈ f−1(C)∩ f−1(D), x∈ f−1(C) x∈ f−1(D), f (x)∈ C f (x)∈ D. f (x)∈ C ∩ D,

x∈ f−1(C∩ D). f−1(C)∩ f−1(D)⊆ f−1(C∩ D), f−1(C∩ D) = f−1(C)∩ f−1(D).

(4) x∈ f−1(C\D), f (x)∈ C\D, f (x)∈ C f (x)̸∈ D. x∈ f−1(C).

x∈ f−1(D), f (x)∈ D,f (x)̸∈ D , x̸∈ f−1(D). x∈ f−1(C) x̸∈ f−1(D), x∈ f−1(C)\ f−1(D). f−1(C\ D) ⊆ f−1(C)\ f−1(D). , x∈ f−1(C)\ f−1(D), x∈ f−1(C) x̸∈ f−1(D). f (x)∈ C. f (x)∈ D,

x∈ f−1(D),x̸∈ f−1(D) , f (x)̸∈ D. f (x)∈ C f (x)̸∈ D, f (x)∈ C \ D, x∈ f−1(C\ D). f−1(C)\ f−1(D)⊆ f−1(C\ D),

f−1(C\ D) = f−1(C)\ f−1(D). 

Question 5.4. X , A⊆ X f : X→ X function. f−1(Ac)⊆ ( f−1(A))c

? ( f−1(A))c⊆ f−1(Ac) ?

f : X → Y function A X subset , f (A) Y subset,

f−1( f (A)). a∈ A, f (a)∈ f (A), inverse image a∈ f−1( f (A)), A⊆ f−1( f (A)). , x∈ f−1( f (A)), f (x)∈ f (A),

x∈ A.f :{1,2} → {0} f (1) = f (2) = 0 . A ={1},

f (A) ={0}, f−1( f (A)) = f−1({0}) = {1,2} ̸= A. f−1( f (A)) A.

A⊆ f−1( f (A)) .

Question 5.5. f : X→ Y function. f−1( f (X )) = X .

C Y subset , f−1(C) X subset, f ( f−1(C)).

y∈ f ( f−1(C)), x∈ f−1(C) y = f (x). inverse image x∈ f−1(C) f (x)∈ C, y = f (x)∈ C. f ( f−1(C))⊆ C. , y∈ C,

y∈ f ( f−1(C)), x∈ X y = f (x).

f :{1,2} → {3,4} f (1) = f (2) = 3. C ={3,4}, f−1(C) ={1,2}, f ( f−1(C)) = f ({1,2}) = {3} ̸= C. C f ( f−1(C)). y∈ C

x∈ X y = f (x), . .

(11)

5.3. Onto, One-to-One and Inverse 77

Proposition 5.2.7. f : X→ Y function C Y subset, f ( f−1(C)) = C∩ f (X).

Proof. 前 f ( f−1(C))⊆ C, f−1(C)⊆ X, f ( f−1(C))⊆ f (X), f ( f−1(C))⊆ C ∩ f (X). y∈ C ∩ f (X), y∈ C x∈ X y = f (x).

, x f (x) = y∈ C, x∈ f−1(C). y = f (x)∈ f ( f−1(C)), C∩ f (X) ⊆

f ( f−1(C)). f ( f−1(C)) = C∩ f (X). 

Proposition 5.2.7, . 數 f : X → Y X subset A.

f (A) Y subset, f (A)⊆ f (X). Proposition 5.2.7 (C = f (A) ), f ( f−1( f (A))) = f (A)∩ f (X) = f (A).

Question 5.6. f : X→ Y function C Y subset. Proposition 5.2.7, Proposition 5.2.6 Question 5.5

f−1( f ( f−1(C))) = f−1(C).

5.3. Onto, One-to-One and Inverse

Onto one-to-one 數 . 數

數. 數學 . 學 onto

one-to-one 數, .

onto ( ) 數, ,

. 數 range ( ) codomain ( ) onto 數.

:

Definition 5.3.1. f : X → Y function. f (X ) = Y , f onto.

y∈ Y x∈ X f (x) = y. onto 數 surjective function.

inverse image f : X→ Y onto y∈ Y, f−1({y}) ̸= /0.

數 onto, 前 image .

.

Example 5.3.2. (A) Example 5.2.2 數 f :R \ {3} → R f (x) =

(x + 1)/(x− 3), ∀x ∈ X. f range R \ {1}. f onto. “ ”

數 g :R \ {3} → R \ {1} g(x) = (x + 1)/(x− 3), ∀x ∈ X, g(x) onto.

(B) 數 f :Z → N ∪ {0}

f (n) =

{ 2n, if n≥ 0;

−2n − 1, if n < 0.

f onto. f f

數 數. k∈ N ∪ {0} 數, k/2∈ Z k/2≥ 0. n = k/2,

f (n) = 2n = k. k∈ N ∪ {0} 數, k + 1∈ Zk + 1 > 0.

(12)

n =−(k+1)/2, n∈ Z n < 0, f (n) =−2n−1 = (−2(−(k+1)/2)−1 = k.

f onto.

數 ( 數 ) , onto .

數 onto .

Theorem 5.3.3. f : X→ Y function. f onto g : Y → X function f◦ g = idY.

Proof. (⇒) f : X→ Y onto , f 數 g : Y → X f◦g = idY.

Axiom of Choice , ,

. . f

onto, y∈ Y, f−1({y}) ̸= /0. y∈ Y, g(y)

f−1({y}) . Y X 數 g.

f◦ g : Y → Y y∈ Y, g(y) = x, x∈ f−1({y}), f (x) = y.

f◦ g(y) = f (g(y)) = f (x) = y. f◦ g = idY.

(⇐) g : Y → X function f◦ g = idY, f : X→ Y onto,

y∈ Y, x∈ X y = f (x). y∈ Y, g(y)∈ X.

x = g(y)∈ X, f (x) = f (g(y)) = f◦g(y) = idY(y) = y. x∈ X y = f (x),

f : X→ Y onto. 

Example 5.3.4. X ={1,2,3}, Y = {a,b} f : X → Y, f (1) = f (2) = a,

f (3) = b. f : X → Y onto. g : Y → X f◦ g = idY.

Y X 數, Y . f−1({a}) = {1,2},

f−1({a}) , 2, g(a) = 2. f−1({b}) = {3}

, g(b) = 3. g : Y→ X function

f◦ g(a) = f (g(a)) = f (2) = a f◦ g(b) = f (g(b)) = f (3) = b. f◦ g = idY.

Theorem 5.3.3 onto onto .

.

Proposition 5.3.5. f1: X → Y, f2: Y → Z onto function, f2◦ f1: X → Z onto.

Proof. ( ) onto , z∈ Z, x∈ X f2◦ f1(x) =

z. f2: Y→ Z onto, z∈ Z, y∈Y f2(y) = z. f1: X→Y onto, y∈ Y, x∈ X f1(x) = y. x, f2◦ f1(x) = f2( f1(x)) = f2(y) = z.

f2◦ f1: X → Z onto.

( ) Theorem 5.3.3, f2◦ f1: X → Z onto, g : Z→ X

( f2◦ f1)◦ g = idZ . f1: X → Y, f2: Y → Z onto, Theorem 5.3.3 g1: Y→ X, g2: Z→ Y f1◦ g1= idY f2◦ g2= idZ. g = g1◦ g2: Z→ X,

(13)

5.3. Onto, One-to-One and Inverse 79

( f2◦ f1)◦ g = ( f2◦ f1)◦ (g1◦ g2). 數 (Proposition 5.1.6) Lemma 5.1.5, ( f2◦ f1)◦ (g1◦ g2) = f2◦ ( f1◦ g1)◦ g2= f2◦ (idY◦ g2) = f2◦ g2= idZ.

( f2◦ f1)◦ g = idZ. 

Proposition 5.3.5 , f2◦ f1 onto f1, f2

onto. Example 5.3.4 g :{a,b} → {1,2,3} g(a) = 2, g(b) = 3, onto.

f◦ g = id{a,b} onto. .

Corollary 5.3.6. f1: X → Y, f2: Y→ Z function f2◦ f1: X → Z onto, f2 onto.

Proof. f2◦ f1: X→ Z onto, Theorem 5.3.3 g : Z→ X ( f2◦ f1)◦g = idZ. 數 f2◦ ( f1◦ g) = idZ. g2= f1◦ g, g2: Z→ Y

f2◦ g2= f2◦ ( f1◦ g) = idZ. Theorem 5.3.3 f2: Y → Z onto.  Question 5.7. onto Corollary 5.3.6.

Corollary 5.3.6 , f2 onto

f2◦ f1 onto.

Question 5.8. X ={a,b}, Y = {1,2,3}, f1: X→ Y, f2: Y→ X functions f2 onto, f2◦ f1 onto.

one-to-one ( ) 數,

. :

Definition 5.3.7. f : X → Y function. X x1̸= x2, f (x1)̸= f (x2), f one-to-one. one-to-one 數 injective function.

inverse image f : X → Y one-to-one y ∈ Y,

#( f−1({y})) ≤ 1 ( f−1({y})) = /0). ,

one-to-one , Definition 5.3.7 contrapositive . x1, x2∈ X f (x1) = f (x2), x1= x2. .

Example 5.3.8. Example 5.3.2 數 one-to-one.

(A) 數 f :R\{3} → R f (x) = (x + 1)/(x−3), ∀x ∈ X. x1, x2∈ R\{3}

f (x1) = f (x2), (x1+ 1)/(x1−3) = (x2+ 1)/(x2−3), (x1+ 1)(x2−3) = (x2+ 1)(x1−3).

x2− 3x1= x1− 3x2, x1= x2. f one-to-one.

(B) 數 f :Z → N ∪ {0}

f (n) =

{ 2n, if n≥ 0;

−2n − 1, if n < 0.

n1, n2∈ Z f (n1) = f (n2). n1, n2 0

0, f f (n1) f (n2) , f (n1) = f (n2) .

(14)

n1≥ 0,n2≥ 0 n1< 0, n2< 0. n1≥ 0,n2≥ 0, f (n1) = 2n1, f (n2) = 2n2, f (n1) = f (n2) n1= n2. , n1< 0, n2< 0, f (n1) =−2n1− 1, f (n2) =

−2n2− 1, f (n1) = f (n2) n1= n2. f one-to-one.

onto , 數 one-to-one .

Theorem 5.3.9. f : X→ Y function. f one-to-one h : Y → X function h◦ f = idX.

Proof. (⇒) f : X → Y one-to-one , f 數 h : Y → X h◦ f = idY. f one-to-one, y∈ Y, #( f−1({y})) ≤ 1.

y∈ Y, f−1({y}) = /0 h(y) X . f−1({y}) ̸= /0,

f−1({y}) . f−1({y}) = {x} h(y) = x.

Y X 數 h. h◦ f : X → X x∈ X, f (x) = y,

x∈ f−1({y}), h(y) = x. h◦ f (x) = h( f (x)) = h(y) = x. h◦ f = idX.

(⇐) h : Y → X function h◦ f = idX, f : X → Y one-

to-one, x1, x2∈ X f (x1) = f (x2), x1= x2. x1∈ X, x1= idX(x1) = h◦ f (x1) = h( f (x1)). x2∈ X, x2= h( f (x2)).

f (x1) = f (x2)∈ Y h : Y → X function h( f (x1)) = h( f (x2)).

x1= h( f (x1)) = h( f (x2)) = x2.

 Example 5.3.10. X ={a,b}, Y = {1,2,3} f : X→ Y, f (a) = 3, f (b) = 1.

f : X → Y one-to-one. h : Y → X h◦ f = idX.

Y X 數, Y . f−1({2}) = /0,

X , a, h(2) = a. f−1({1}) = {b}

h(1) = b. f−1({3}) = {a} h(3) = a h : Y → X

function h◦ f (a) = h( f (a)) = h(3) = a h◦ f (b) = h( f (b)) = h(1) = b.

h◦ f = idX.

Theorem 5.3.9 one-to-one one-to-one .

.

Proposition 5.3.11. f1: X→ Y, f2: Y → Z one-to-one function, f2◦ f1: X→ Z one-to-one.

Proof. ( ) one-to-one . x1, x2∈ X f2◦ f1(x1) = f2◦ f1(x2). f2( f1(x1)) = f2( f1(x2)), f2: Y → Z one-to-one, f1(x1) = f1(x2). f1: X → Y one-to-one, x1= x2

( ) Theorem 5.3.9, f2◦ f1: X → Z one-to-one,

h : Z→ X h◦ ( f2◦ f1) = idX . f1: X → Y, f2: Y → Z one-to-one,

(15)

5.3. Onto, One-to-One and Inverse 81

Theorem 5.3.9 h1: Y → X, h2: Z → Y h1◦ f1= idX h2◦ f2= idY. h = h1◦ h2 : Z→ X, h◦ ( f2◦ f1) = (h1◦ h2)◦ ( f2◦ f1). 數

(Proposition 5.1.6) Lemma 5.1.5, (h1◦ h2)◦ ( f2◦ f1) = h1◦ (h2◦ f2)◦ f1= h1◦ (idY◦ f1) = h1◦ f1= idX. h◦ ( f2◦ f1) = idX. 

Proposition 5.3.11 , f2◦ f1 one-to-one

f1, f2 one-to-one. Example 5.3.10 h :{1,2,3} → {a,b} h(1) = b, h(2) = a, h(3) = a, one-to-one. h◦ f = id{a,b} one-to-one.

.

Corollary 5.3.12. f1: X→ Y, f2: Y → Z function f2◦ f1: X→ Z one-to-one, f1 one-to-one.

Proof. f2◦ f1: X → Z one-to-one, Theorem 5.3.9 h : Z→ X h◦ ( f2◦ f1) = idX. 數 (h◦ f2)◦ f1= idX. h1 = h◦ f2,

h1: Y → X h1◦ f1= (h◦ f2)◦ f1= idX. Theorem 5.3.9 f1: X→ Y

one-to-one. 

Question 5.9. one-to-one Corollary 5.3.12.

Corollary 5.3.12 , f1 one-to-one

f2◦ f1 one-to-one.

Question 5.10. X ={a,b}, Y = {1,2,3}, f1 : X → Y, f2 : Y → X functions f1 one-to-one, f2◦ f1 one-to-one.

one-to-one and onto 數. 數 bijective

function bijection. f : X → Y bijective, f onto g : Y → X

f◦ g = idY (Theorem 5.3.3). f one-to-one h : Y → X h◦ f = idX

(Theorem 5.3.9). Lemma 5.1.5,

h = h◦ idY = h◦ ( f ◦ g) = (h ◦ f ) ◦ g = idX◦ g = g.

f : X → Y bijective , g : Y → X, f◦ g = idY

g◦ f = idX. 數 g . g : Y → X g: Y → X

f◦ g = f ◦ g= idY g◦ f = g◦ f = idX,

g= g◦ idY = g◦ ( f ◦ g) = (g◦ f ) ◦ g = idX◦ g = g.

數 g f , f−1, f

inverse. , bijective function invertible function.

Question 5.11. f : X → Y injective. g : Y → X f◦ g = idY, g = f−1. h : Y → X h◦ f = idX, h = f−1.

(16)

, f−1 inverse image . 數 inverse image, f : X→ Y bijective, Y subset C, inverse image f−1(C)

. Y y, f bijective f−1(y) . ,

y∈ Y, f−1({y}) , f−1(y) f bijective .

f : X→ Y bijective , inverse image f−1: Y → X . ,

y∈ Y, f onto one-to-one, #( f−1({y})) = 1. f−1({y})

. f−1({y}) = {x}, f−1(y) = x. , f (x) = y

f−1(y) = x, f◦ f−1= idY f−1◦ f = idX.

Example 5.3.13. Example 5.3.2 bijective function inverse . (A) 數 g :R \ {3} → R \ {1} g(x) = (x + 1)/(x− 3), ∀x ∈ X, g(x) onto. Example 5.2.2 y∈ R \ {1}, g−1({y}) = {(3y + 1)/(y − 1)}.

g−1:R \ {1} → R \ {3} g−1(x) = (3x + 1)/(x− 1), ∀x ∈ R \ {1}.

(B) 數 f :Z → N ∪ {0}

f (n) =

{ 2n, if n≥ 0;

−2n − 1, if n < 0.

Example 5.3.2 k∈ N ∪{0} 數, f−1({k}) = {k/2}. k∈ N ∪{0}

數, f−1({k}) = {−(k + 1)/2}. f−1:N ∪ {0} → Z f−1(n) =

{ n/2, if n is even;

−(n + 1)/2, if n is odd.

f : X→ Y bijective , f inverse . , f inverse ,

f−1: Y → X f◦ f−1= idY f−1◦ f = idX, Theorem 5.3.3 Theorem 5.3.9

f bijective. .

Theorem 5.3.14. f : X→ Y function. f bijection f−1: Y → X f◦ f−1= idY f−1◦ f = idX.

Question 5.12. f : X→ Y bijective function. f−1: Y → X bijective ( f−1)−1= f .

Proposition 5.3.5 Proposition 5.3.11 :

Proposition 5.3.15. f1: X→ Y, f2: Y→ Z bijective function, f2◦ f1: X→ Z bijective function.

( f2◦ f1)−1= f1−1◦ f2−1.

Proof. ( f2◦ f1)◦ ( f1−1◦ f2−1) = idZ ( f1−1◦ f2−1)◦ ( f2◦ f1) = idX. Theorem 5.3.14 f2◦ f1: X→ Z bijective. inverse function ,

( f2◦ f1)−1= f1−1◦ f2−1.

( f2◦ f1)◦ ( f1−1◦ f2−1) = f2◦ ( f1◦ f1−1)◦ f2−1= ( f2◦ idY)◦ f2−1= f2◦ f2−1= idZ,

(17)

5.4. Equivalent Sets and Cardinal Number 83

( f1−1◦ f2−1)◦ ( f2◦ f1) = f1−1◦ ( f2−1◦ f2)◦ f1= f1−1◦ (idY◦ f1) = f1−1◦ f1= idX.

. 

Question 5.13. f1: X→ Y, f2: Y → Z function f2◦ f1: X→ Z bijective.

f1: X→ Y, f2: Y→ Z bijective? f1, f2 bijective, bijective?

5.4. Equivalent Sets and Cardinal Number

數 , 數

數 . A n , 數 A

, {1,...,n} A bijective function.

.

Definition 5.4.1. A, B set, bijection f : A→ B, A is equivalent to

B, |A| = |B| .

A finite set, |A| A 數 #(A).

A finite set , |A| , A cardinal number.

A is equivalent to B A B cardinal number.

Equivalent set equivalence relation.

Proposition 5.4.2. sets A, B,C, .

(1) |A| = |A|.

(2) |A| = |B| |B| = |A|.

(3) |A| = |B| |B| = |C|, |A| = |C|.

Proof. (1) A, idA: A→ A. idA bijective, |A| = |A|.

(2) |A| = |B|, f : A→ B bijective. f−1: B→ A, bijective ( Question 5.12), |B| = |A|.

(3) |A| = |B| |B| = |C|, f : A→ B, g : B →C bijective, Proposition

5.3.15 g◦ f : A → C bijective. |A| = |C|. 

, , 數 n, In 1 n

, I1={1}, I2={1,2},…, In={1,...,n}. A n finite set,

|A| = |In|. A B n , |A| = |In| |B| = |In|,

Proposition 5.4.2 |A| = |B|.

A, B finite set A 數 n B 數 m,

|A| = |B| ? |In| |Im| . n̸= m, ,

m > n. |Im| = |In|, bijection f : Im→ In. Theorem 2.2.3 (

(18)

Im m , In n ), f : Im→ In one-to-one

( 數 數, 1 ), f bijective

, |In| ̸= |Im|. |A| = |B|, |A| = |In|, |B| = |Im| Proposition 5.4.2

|In| = |Im| , |A| ̸= |B|.

前 , finite set , cardinal number

數 數 . cardinal number infinite set. ,

, 數 , nonempty set A, n∈ N,

|A| ̸= |In|, A infinite set.

cardinal number 數 , A∩ B = /0, C ∩ D = /0,

|A| = |C|, |B| = |D|, 數 , |A ∪ B| = |C ∪ D|. ,

.

Lemma 5.4.3. I index set, {Ai, i∈ I}, {Bi, i∈ I} A, B partition.

i∈ I, |Ai| = |Bi|, |A| = |B|.

Proof. , {Ai, i∈ I} A partition A =

i∈I

Ai i, j∈ I, i̸= j, Ai∩ Aj= /0. , i∈ I, |Ai| = |Bi|, fi: Ai→ Bi bijective

function. fi, bijective function f : A→ B. |A| = |B|.

f : A→ B : a∈ A, {Ai, i∈ I} A partition,

i∈ I a∈ Ai, f (a) = fi(a)∈ Bi. {Ai, i∈ I} A partition, f

A Bi⊆ B. A B

function. f : A→ B one-to-one and onto.

b∈ B, {Bi, i∈ I} B partition, i∈ I, b∈ Bi.

fi: Ai→ Bi onto, a∈ Ai fi(a) = b. f , b,

a∈ A, a∈ Ai, f f (a) = fi(a) = b. f : A→ B onto.

a, a∈ A f (a) = f (a). f (a)∈ B, i∈ I f (a) = f (a)∈ Bi. f , a∈ Aj, f (a) = fj(a)∈ Bj. f (a)∈ Bi∩ Bj i = j, a∈ Ai. a∈ Ai. f f (a) = fi(a) f (a) = fi(a).

f (a) = f (a) fi(a) = fi(a), fi one-to-one a = a. f

one-to-one. 

cardinal number 數 , . finite

set , one-to-one .

.

Definition 5.4.4. A, B set, |A| ≤ |B| one-to-one function f : A→ B.

. A⊆ B, f : A→ B, f (a) = a,

∀a ∈ A. f one-to-one function, |A| ≤ |B|. ,

(19)

5.4. Equivalent Sets and Cardinal Number 85

m, n∈ N m > n, In⊆ Im, |In| ≤ |Im|.

one-to-one function f : Im→ In, |Im| ≤ |In| .

數 ,

cardinal number . .

Proposition 5.4.5. A, B set. |A| ≤ |B| onto function h : B→ A.

Proof. (⇒) |A| ≤ |B|, one-to-one function : A→ B. Theorem 5.3.9 h : B→ A h◦ f = idA. idA: A→ A onto function, Corollary 5.3.6 h : B→ A onto.

(⇐) h : B→ A onto , g : A→ B h◦ g = idA (Theorem 5.3.3). idA

one-to-one g : A→ B one-to-one (Corollary 5.3.12). |A| ≤ |B|.  Definition 5.4.4 cardinal number partial order. ( cardinal number total order, Axiom of Choice

, .) reflexive , A,

idA: A→ A, idA one-to-one, |A| ≤ |A|. transitive ,

|A| ≤ |B| |B| ≤ |C|, f : A→ B g : B→ C one-to-one, g◦ f : A → C one-to-one (Proposition 5.3.11). |A| ≤ |C|. anti-symmetric ,

, Cantor–Schröder–Bernstein Theorem.

Theorem 5.4.6 (Cantor–Schröder–Bernstein). A, B sets |A| ≤ |B| |B| ≤ |A|,

|A| = |B|.

Proof. |A| ≤ |B| f : A→ B one-to-one function. |B| ≤ |A|,

g : B→ A one-to-one function. f , g A, B partition, Lemma

5.4.3 |A| = |B|.

a∈ A, A∪ B 數 . :

x1= a, inverse image g−1({a}). g one-to-one, g−1({a})

. g−1({a}) = /0,x1 . g−1({a}) = {b},

x2= b. b∈ B, f−1({b}). , f one-to-one, f−1({b})

. f−1({b}) = /0, 數 x1, x2 . f−1({b}) = {a},

x3= a. a∈ A, g−1({a}), 前 . ⟨a⟩

a 數 ( 數 ,

Example 5.4.7). a∈ A⟨a⟩ = x1, x2, . . . , .

數 數 . a∈ A g−1({a}) = /0, ⟨a⟩ , 數

. 數 數 . a∈ A g−1({a}) = {b} f−1({b}) = /0, ⟨a⟩

a, b , 數 . 數 , a∈ A

數 inverse image .

Ao={a ∈ A : ⟨a⟩}, Ae={a ∈ A : ⟨a⟩}, A={a ∈ A : ⟨a⟩ }.

(20)

a∈ A,⟨a⟩, a Ao, Ae, A

, . Ao, Ae, A A partition.

數 , 數 A , 數 B

. ⟨a⟩ = x1, x2, . . . , ixi∈ A. xi∈ f−1({xi−1}), f (xi) = xi−1. ixi∈ B. xi∈ g−1({xi−1}), g(xi) = xi−1.

b∈ B, b 數 , y1= b,

f−1({b}) , . ⟨b⟩ b 數 .

, B partition B0, Be, B,

Bo={b ∈ B : ⟨b⟩}, Be={b ∈ B : ⟨b⟩}, B={b ∈ B : ⟨b⟩ }.

restriction map f|Ao : Ao→ B, a∈ Ao, f|Ao(a) = f (a). f one-to-one, f|Ao one-to-one. f|Ao range f|Ao(Ao) Be.

a∈ Ao, f|Ao(a) = f (a)∈ B. f (a) sequence, y1= f (a), f−1({ f (a)}) = {a} ( f (a)∈ { f (a)}), ⟨ f (a)⟩ y2= a. 言 ,

⟨ f (a)⟩ 前 y1= f (a), y2= a, ( ) y3 g−1({a})

. a⟨a⟩ x2 . 言 , 數 ⟨ f (a)⟩

⟨a⟩f (a) . a∈ Ao, ⟨a⟩ 數 , ⟨ f (a)⟩

數 , f (a)∈ B f (a)∈ Be. f|Ao(Ao)⊆ Be. , b∈ Be, b

⟨b⟩ 數 . ⟨b⟩ ( , ). ⟨b⟩

f−1({b}) , a∈ A f (a) = b. a ⟨b⟩

, 前 , ⟨a⟩ ⟨b⟩ = ⟨ f (a)⟩ , ⟨a⟩ 數 ,

a∈ Ao. b∈ Be, a∈ Ao f (a) = f|Ao(a) = b.

Be⊆ f |Ao(Ao), f|Ao range f|Ao(Ao) Be. 言 , f|Ao Ao Be one-to-one and onto function. |Ao| = |Be|.

, g : B→ A Bo restriction g|Bo : Bo→ A, |Bo| = |Ae| (

f , g ). g B restriction g|B ( f

A restriction). g|B one-to-one. b∈ B, g(b)

⟨g(b)⟩. g(b)∈ A, g−1({g(b)}) = {b}, ⟨g(b)⟩ g(b),

b, ⟨b⟩ . b∈ B ⟨b⟩ ⟨g(b)⟩ .

g(b)∈ A, g|B range g|B(B) A. , a∈ A, a

⟨a⟩ . ⟨a⟩ . ⟨a⟩ g−1({a})

, b∈ B g(b) = a. b ⟨a⟩ , 前

,⟨b⟩ ⟨a⟩ , ⟨b⟩ , b∈ B.

a∈ A, b∈ B g(b) = g|B(b) = a. A⊆ g|B(B),

g|B range g|B(B) A. 言 , g|B B A one-to-one and onto function. |B| = |A|.

Ao, Ae, A A partition Bo, Be, B B partition, |Ao| = |Be|,

|Ae| = |Bo| |A| = |B|, Lemma 5.4.3 |A| = |B|. 

(21)

5.4. Equivalent Sets and Cardinal Number 87

Question 5.14. Theorem 5.4.6 , |Ae| = |Bo| g Bo restriction f Ae restriction? f Ae restriction f|Ae: Ae→ B,

range ? |A| = |B| f A restriction f|A : A→ B ? Example 5.4.7. A ={1,2,...}, B ={−1,−2,...}

. f : A→ B f (a) =−1 − a, ∀a ∈ A g : B→ A g(b) = 1− b,

∀b ∈ B. Theorem 5.4.6 數 .

數 :

..

1 .

2 .

3 .

4 .

···

−1.. . −2 . −3 . −4

···

f , g.

3∈ A, g−1({3}) = {−2}, f−1({−2}) = {1} g−1({1}) = /0,

3 數 ⟨3⟩ 3,−2,1. 數 3 , 3∈ Ao. ,

4 數 ⟨4⟩ 4,−3,2,−1, 4∈ Ae. , a∈ A

a∈ Ao, a∈ Aa∈ Ae. A= /0. Ao, Ae A

partition ( 數 數 partition).

−3 ∈ B, f−1({−3}) = {2}, g−1({2}) = {−1} f−1({−1}) = /0,

−3⟨−3⟩ −3,2,−1. 數 3 , −3 ∈ Bo. ,

−4⟨−4⟩ −4,3,−2,1, −4 ∈ Be. ,

b∈ Bb∈ Bo, b∈ Bb∈ Be. B= /0. Bo, Be

B partition.

f Ao Be ( one-to-one correspondence).

a∈ Ao a 數, f (a) =−(1+a) f (a) 數, f (a)∈ Be. f

Ao Be. b∈ Be, b 數. a =−b − 1,

a > 0 ( b≤ −2) a 數, a∈ Ao. a =−b−1 ∈ Ao f f (a) =−(1+a) = b.

f Ao Be. f Ae Bo. Bo

inverse image . −1 ∈ Bo f−1({−1}) = /0.

g Bo Ae one-to-one correspondence. b∈ Bo, b

數, g(b) = 1−b 數, g(b)∈ Ae. , a∈ Ae, b = 1−a < 0

( a≥ 2) 數. b = 1− a ∈ Bo g, g(b) = 1− b = 1 − (1 − a) = a,

g Bo Ae.

Question 5.15. Example 5.4.7 f g A B bijective function h : A→ B h|Ao = f|Ao.

, cardinal number “strict order”. A, B sets, |A| ≤ |B|

|A| ̸= |B| , |A| < |B| . 前 m, nm > n ,

參考文獻

相關文件

第二級失能 生活補助金 滿第一年 15萬元 11.25萬元 滿第二年 20萬元 15.00萬元 滿第三年 25萬元 18.75萬元 滿第四年 30萬元

In addition, we successfully used unit resistors to construct the ratio of consecutive items of Fibonacci sequence, Pell sequence, and Catalan number.4. Minimum number

Joint “ “AMiBA AMiBA + Subaru + Subaru ” ” data, probing the gas/DM distribution data, probing the gas/DM distribution out to ~80% of the cluster. out to ~80% of the cluster

The entire moduli space M can exist in the perturbative regime and its dimension (∼ M 4 ) can be very large if the flavor number M is large, in contrast with the moduli space found

Monopolies in synchronous distributed systems (Peleg 1998; Peleg

3.1(c) again which leads to a contradiction to the level sets assumption. 3.10]) which indicates that the condition A on F may be the weakest assumption to guarantee bounded level

For R-K methods, the relationship between the number of (function) evaluations per step and the order of LTE is shown in the following

[r]