• 沒有找到結果。

JuvenWang(MIT)Jan13,2012@NatlTaiwanUniv HolographicViewonnon-relativisticSuperfluids,FermiSurfacesandRGfixedpoints

N/A
N/A
Protected

Academic year: 2022

Share "JuvenWang(MIT)Jan13,2012@NatlTaiwanUniv HolographicViewonnon-relativisticSuperfluids,FermiSurfacesandRGfixedpoints"

Copied!
118
0
0

加載中.... (立即查看全文)

全文

(1)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

Juven Wang (MIT)

Jan 13, 2012 @ Natl Taiwan Univ

(2)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Introduction Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

Boson Operators in Schr/NRCFT Setup & Dictionary

Superfluids from Schr BH Superfluids from Schr soliton Fermion Operators in Schr/NRCFT

Setup & Dictionary Fermi Surface

Landau Fermi Liquid & Senthil’s ansatz

Quantum Phase Transition & Fermi Surface disappearance B-F theory formalism of RG critical points

Known Solution

B-F theory and New Solution New Ideas

Conclusion

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(3)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Work based on:

(1) non-relativistic Superfluids

- arXiv: 1103.3472, New J. Phys. 13, 115008 (2011), Allan Adams, JW.

(2) non-relativistic Fermi surface

- to appear, Allan Adams, Raghu Mahajan, JW.

(3) B-F theory on RG critical points - JW, . . . .

(4)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Why do we use gravity-dual(string theory) to study quantum many-body systems? . . .

Gravity Quantum

(1). Strongly coupled many-body quantum systems are hard to study by QFT, which gravity dual system is weak coupled and often classical gravity - an easier approach.

(2). Enhance understandings on both sides

gravity, string theory ⇔ quantum many-body systems QFT

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(5)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Why do we use gravity-dual(string theory) to study quantum many-body systems? . . .

Gravity Quantum

(1). Strongly coupled many-body quantum systems are hard to study by QFT, which gravity dual system is weak coupled and often classical gravity - an easier approach.

(2). Enhance understandings on both sides

gravity, string theory ⇔ quantum many-body systems QFT

(6)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Why do we use gravity-dual(string theory) to study quantum many-body systems? . . .

Gravity Quantum

(1). Strongly coupled many-body quantum systems are hard to study by QFT, which gravity dual system is weak coupled and often classical gravity - an easier approach.

(2). Enhance understandings on both sides

gravity, string theory ⇔ quantum many-body systems QFT

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(7)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Why do we use gravity-dual(string theory) to study quantum many-body systems? . . .

Gravity Quantum

(1). Strongly coupled many-body quantum systems are hard to study by QFT, which gravity dual system is weak coupled and often classical gravity - an easier approach.

(2). Enhance understandings on both sides

(8)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Four Take-Home Messages:

(1). Gravity dual of non-realtivistic conformal field

theory(NRCFT) can be useful description for strongly coupled many-body quantum systems.

(2). Gravity dual’s Bosonic operators under NRCFT

background shows superfluid, metal or insulator low energy states.

(3). Gravity dual’s Fermionic operators under NRCFT

background shows Fermi surfaces(metalic), or Fermi surfaces collapses(insulator) low energy states.

(4). Use Gravitational B-F theory to formulate gravity duals of CFT, NRCFTand Lifshitz field theory.

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(9)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ? Ex 1: Hologram

3D ⇔Fourier Trans⇔2D

Ex: Bulk side Dictionary Boundary side Hologram 3D object Fourier Trans 2D image

(10)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Ex 2: AdS/CFT

(Anti-de Sitter space/Conformal Field Theory)

Ex: Bulk side Dictionary Boundary side

AdS/CFT (D+1)-dim gravity AdS/CFT D-dim Relativistic field theory 1997 Maldacena conjecture, Gubser, Klebanov&Polyakov and Witten

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(11)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Aside from Ex2AdS/CFT: The hidden but profound connections between(a)Gravity,

(b)Thermodynamics(Statistical Mech.) and(c)Quantum(Information).

(a) (b) (c)

(12)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Aside from Ex2AdS/CFT: The hidden but profound connections between(a)Gravity,

(b)Thermodynamics(Statistical Mech.) and(c)Quantum(Information).

(a) (b) (c)

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(13)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Aside from Ex2AdS/CFT: The hidden but profound connections between(a)Gravity,

(b)Thermodynamics(Statistical Mech.) and(c)Quantum(Information).

(a) ↔ (b):

(i)black hole thermodynamics: Hawking (TH= κ/2π), Bekenstein (SBH = A/4), Unruh (T = a/2π). (ii)Thermodynamics of Spacetime- The Einstein Equation of State(δQ = TdS ): Jacobson, Verlinde. (iii)analogue model: acoustic black hole, He3(Volovik), Bose-Einstein Condensation.

(b) ↔ (c):

(i)partition function Z:

Classical state mech e−βH (d-dim space) ⇔ Euclidean QFT (d-dim spacetime). Quantum state mech e−βH (D-dim space) ⇔ Euclidean QFT (D+1-dim spacetime). (ii) Nelson: derivation of Schr¨odinger eq from stochastic Brownian motion w/ friction.

(c) ↔ (a):

(i)stringtheory,loop quantum gravity, (ii)emergent graviton, (iii) Levin-Wenstring-netandQuantum Graphity.

(14)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Aside from Ex2AdS/CFT: The hidden but profound connections between(a)Gravity,

(b)Thermodynamics(Statistical Mech.) and(c)Quantum(Information).

(a) ↔ (b):

(i)black hole thermodynamics: Hawking (TH= κ/2π), Bekenstein (SBH = A/4), Unruh (T = a/2π). (ii)Thermodynamics of Spacetime- The Einstein Equation of State(δQ = TdS ): Jacobson, Verlinde.

(iii)analogue model: acoustic black hole, He3(Volovik), Bose-Einstein Condensation.

(b) ↔ (c):

(i)partition function Z:

Classical state mech e−βH (d-dim space) ⇔ Euclidean QFT (d-dim spacetime). Quantum state mech e−βH (D-dim space) ⇔ Euclidean QFT (D+1-dim spacetime). (ii) Nelson: derivation of Schr¨odinger eq from stochastic Brownian motion w/ friction.

(c) ↔ (a):

(i)stringtheory,loop quantum gravity, (ii)emergent graviton, (iii) Levin-Wenstring-netandQuantum Graphity.

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(15)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Aside from Ex2AdS/CFT: The hidden but profound connections between(a)Gravity,

(b)Thermodynamics(Statistical Mech.) and(c)Quantum(Information).

(a) ↔ (b):

(i)black hole thermodynamics: Hawking (TH= κ/2π), Bekenstein (SBH = A/4), Unruh (T = a/2π). (ii)Thermodynamics of Spacetime- The Einstein Equation of State(δQ = TdS ): Jacobson, Verlinde.

(iii)analogue model: acoustic black hole, He3(Volovik), Bose-Einstein Condensation.

(b) ↔ (c):

(i)partition function Z:

Classical state mech e−βH (d-dim space) ⇔ Euclidean QFT (d-dim spacetime).

Quantum state mech e−βH (D-dim space) ⇔ Euclidean QFT (D+1-dim spacetime).

(ii) Nelson: derivation of Schr¨odinger eq from stochastic Brownian motion w/ friction.

(c) ↔ (a):

(i)stringtheory,loop quantum gravity, (ii)emergent graviton, (iii) Levin-Wenstring-netandQuantum Graphity.

(16)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Aside from Ex2AdS/CFT: The hidden but profound connections between(a)Gravity,

(b)Thermodynamics(Statistical Mech.) and(c)Quantum(Information).

(a) ↔ (b):

(i)black hole thermodynamics: Hawking (TH= κ/2π), Bekenstein (SBH = A/4), Unruh (T = a/2π). (ii)Thermodynamics of Spacetime- The Einstein Equation of State(δQ = TdS ): Jacobson, Verlinde.

(iii)analogue model: acoustic black hole, He3(Volovik), Bose-Einstein Condensation.

(b) ↔ (c):

(i)partition function Z:

Classical state mech e−βH (d-dim space) ⇔ Euclidean QFT (d-dim spacetime).

Quantum state mech e−βH (D-dim space) ⇔ Euclidean QFT (D+1-dim spacetime).

(ii) Nelson: derivation of Schr¨odinger eq from stochastic Brownian motion w/ friction.

(c) ↔ (a):

(i)stringtheory,loop quantum gravity, (ii)emergent graviton, (iii) Levin-Wenstring-netandQuantum Graphity.

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(17)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Ex 2: AdS/CFT

(Anti-de Sitter space/Conformal Field Theory)

Ex: Bulk side Dictionary Boundary side

AdS/CFT (D+1)-dim gravity AdS/CFT D-dim Relativistic field theory 1997 Maldacena conjecture, Gubser, Klebanov&Polyakov and Witten

AdS:

(i) Poincare patches: ds2= L2 − r−2dt2+ r−2(dr2+ d~x2) (ii) Hyperboloid submanifold: ds2= −dt2+P d~x2with

−t2+P ~x2= −α2constraint.

CFT:

(i) ex: Massless Klein-Gordon QFT:R ddxdt 12µφ∂µφ

(ii) conformal symmetry: Lorentz group Mµν, time translation H, space

(18)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

(continue)

Ex 2: AdS/CFT

(Anti-de Sitter space/Conformal Field Theory) Q: Why there is holography and duality relation between AdS/CFT?

The best-undertood story is:

AdS5× S5 gravity andN = 4SU(Nc) supersymmetric Yang-Mills(SYM).

hint 1 : matching of symmetries.

N = 4 SYMis invariance underconf (1, 3) × SO(6).

conformal group conf (1, 3) = Poincare sym group+scaling(or dilatation) operator(D)+special conformal transf.(Kµ);

Poincare sym group=Lorentz group+translations operator(Pµ)

(Pµ: this includes time translation Hamiltonian P0= H, plus spatial translation momentum Pi);

Lorentz group=Rotation(Mij)+Lorentz boost(M0j), together Mµν.

SO(6) is from R symmetry.

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(19)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

(continue)

Ex 2: AdS/CFT

(Anti-de Sitter space/Conformal Field Theory) Q: Why there is holography and duality relation between AdS/CFT?

The best-undertood story is:

AdS5× S5 gravity andN = 4SU(Nc) supersymmetric Yang-Mills(SYM).

hint 1 : matching of symmetries.

N = 4 SYMis invariance underconf (1, 3) × SO(6).

conformal group conf (1, 3) = Poincare sym group+scaling(or dilatation) operator(D)+special conformal transf.(Kµ);

Poincare sym group=Lorentz group+translations operator(Pµ)

(Pµ: this includes time translation Hamiltonian P0= H, plus spatial translation momentum Pi);

Lorentz group=Rotation(Mij)+Lorentz boost(M0j), together Mµν.

SO(6) is from R symmetry.

(20)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

(continue)

Ex 2: AdS/CFT

(Anti-de Sitter space/Conformal Field Theory) Q: Why there is holography and duality relation between AdS/CFT?

The best-undertood story is:

AdS5× S5 gravity andN = 4SU(Nc) supersymmetric Yang-Mills(SYM).

hint 1 : matching of symmetries.

N = 4 SYMis invariance underconf (1, 3) × SO(6).

conformal group conf (1, 3) = Poincare sym group+scaling(or dilatation) operator(D)+special conformal transf.(Kµ);

Poincare sym group=Lorentz group+translations operator(Pµ)

(Pµ: this includes time translation Hamiltonian P0= H, plus spatial translation momentum Pi);

Lorentz group=Rotation(Mij)+Lorentz boost(M0j), together Mµν.

SO(6) is from R symmetry.

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(21)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

(continue)

Ex 2: AdS/CFT

(Anti-de Sitter space/Conformal Field Theory) Q: Why there is holography and duality relation between AdS/CFT?

The best-undertood story is:

AdS5× S5 gravity andN = 4SU(Nc) supersymmetric Yang-Mills(SYM).

hint 1 : matching of symmetries.

N = 4 SYMis invariance underconf (1, 3) × SO(6).

conformal group conf (1, 3) = Poincare sym group+scaling(or dilatation) operator(D)+special conformal transf.(Kµ);

Poincare sym group=Lorentz group+translations operator(Pµ)

(Pµ: this includes time translation Hamiltonian P0= H, plus spatial translation momentum Pi);

Lorentz group=Rotation(Mij)+Lorentz boost(M0j), together Mµν.

SO(6) is from R symmetry.

(22)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

(continue)

Ex 2: AdS/CFT

(Anti-de Sitter space/Conformal Field Theory) Q: Why there is holography and duality relation between AdS/CFT?

The best-undertood story is:

AdS5× S5 gravity andN = 4SU(Nc) supersymmetric Yang-Mills(SYM).

hint 1 : matching of symmetries.

N = 4 SYMis invariance underconf (1, 3) × SO(6).

conformal group conf (1, 3) = Poincare sym group+scaling(or dilatation) operator(D)+special conformal transf.(Kµ);

AdS5× S5has diffeomorphism isometry groupSO(2, 4) × SO(6). conf (1, 3) × SO(6)isomorphic toSO(2, 4) × SO(6).

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(23)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

(continue)

Ex 2: AdS/CFT

(Anti-de Sitter space/Conformal Field Theory) Q: Why there is holography and duality relation between AdS/CFT?

The best-undertood story is:

AdS5× S5 gravity andN = 4SU(Nc) supersymmetric Yang-Mills(SYM).

hint 1 : matching of symmetries.

N = 4 SYMis invariance underconf (1, 3) × SO(6).

conformal group conf (1, 3) = Poincare sym group+scaling(or dilatation) operator(D)+special conformal transf.(Kµ);

AdS5× S5has diffeomorphism isometry groupSO(2, 4) × SO(6).

conf (1, 3) × SO(6)isomorphic toSO(2, 4) × SO(6).

(24)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

(continue)

Ex 2: AdS/CFT

(Anti-de Sitter space/Conformal Field Theory) Q: Why there is holography and duality relation between AdS/CFT?

The best-undertood story is:

AdS5× S5 gravity andN = 4SU(Nc) supersymmetric Yang-Mills(SYM).

hint 1 : matching of symmetries.

N = 4 SYMis invariance underconf (1, 3) × SO(6).

conformal group conf (1, 3) = Poincare sym group+scaling(or dilatation) operator(D)+special conformal transf.(Kµ);

AdS5× S5has diffeomorphism isometry groupSO(2, 4) × SO(6).

conf (1, 3) × SO(6)isomorphic toSO(2, 4) × SO(6).

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(25)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

(continue)

Ex 2: AdS/CFT

(Anti-de Sitter space/Conformal Field Theory) Q: Why there is holography and duality relation between AdS/CFT?

The best-undertood story is:

AdS5× S5gravity andN = 4SU(Nc) supersymmetricYang-Mills(SYM) hint 2 : Maldacena conjecture AdS/CFT correspondence

AdS5× S5type IIB string theory

Nc stacks of D3branes.

gravity and string theory

gauge theory, QFT, CFT.

(26)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

(continue)

Ex 2: AdS/CFT

(Anti-de Sitter space/Conformal Field Theory) Q: Why there is holography and duality relation between AdS/CFT?

The best-undertood story is:

AdS5× S5gravity andN = 4supersymmetricYang-Mills(SYM)theory.

hint 3 : matching of parameters strong-weak couplings duality

R2 α0 ∼√

gsNc ∼√

λ, gs ∼ gYM2Nλ

c, R`44

pR4

G ∼ Nc

hint 4 : Partition function and field operator correspondence ZCFT[φ] = Zstring[ Φ|∂AdS] ' e−Ssupergravity.

S → S +R d4x φ(x ) · O(x ) , (source · response) φ = Φ|∂AdS (operator-field)

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(27)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

(continue)

Ex 2: AdS/CFT

(Anti-de Sitter space/Conformal Field Theory) Q: Why there is holography and duality relation between AdS/CFT?

The best-undertood story is:

AdS5× S5gravity andN = 4supersymmetricYang-Mills(SYM)theory.

hint 3 : matching of parameters strong-weak couplings duality

R2 α0 ∼√

gsNc ∼√

λ, gs ∼ gYM2Nλ

c, R`44

pR4

G ∼ Nc

hint 4 : Partition function and field operator correspondence ZCFT[φ] = Zstring[ Φ|∂AdS] ' e−Ssupergravity.

S → S +R d4x φ(x ) · O(x ) , (source · response) φ = Φ|∂AdS (operator-field)

(28)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Ex 2: AdS/CFT

(Anti-de Sitter space/Conformal Field Theory)

Ex: Bulk side Dictionary Boundary side

AdS/CFT (D+1)-dim gravity AdS/CFT D-dim Relativistic field theory 1997 Maldacena conjecture, Gubser, Klebanov&Polyakov and Witten

hint 1 : matching of symmetries. conformal group ' isometry (Isomorphism)

hint 2 : Maldacena conjecture AdS/CFT correspondence hint 3 : matching of parameters strong-weak couplings duality hint 4 : Partition function and field operator correspondence

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(29)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Ex 2: AdS/CFT

(Anti-de Sitter space/Conformal Field Theory)

Ex: Bulk side Dictionary Boundary side

Hologram 3D object Fourier Trans 2D image

AdS/CFT (D+1)-dim gravity AdS/CFT D-dim Rela field theory 1997 Maldacena conjecture, Gubser, Klebanov&Polyakov and Witten

hint 1 : matching of symmetries conformal group ' isometry (Isomorphism)

hint 2 : Maldacena conjecture AdS/CFT correspondence hint 3 : matching of parameters strong-weak couplings duality hint 4 : Partition function and field operator correspondence

(30)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Ex 3: Schr/NRCFT

(Schr¨odinger space(Schr)/NRCFT) hint : matching of symmetries

NRCFT0s Schr group isomorphic to isometry of Schr space . LHS:Schr¨odinger group=Galilean group + translation + scaling(dilatation) operator+special conformal operator.

Galilean group: Rotation(Mi ,j)+Galilean boost(Ki)

translation(Pµ: includes Hamiltonian P0= H and momentum Pi) scaling(dilatation) (D)

special conformal operator (C )

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(31)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Ex 3: Schr/NRCFT

(Schr¨odinger space(Schr)/NRCFT) hint : matching of symmetries

NRCFT0s Schr group isomorphic to isometry of Schr space .

LHS:Schr¨odinger group=Galilean group + translation + scaling(dilatation) operator+special conformal operator.

Galilean group: Rotation(Mi ,j)+Galilean boost(Ki)

translation(Pµ: includes Hamiltonian P0= H and momentum Pi) scaling(dilatation) (D)

special conformal operator (C )

(32)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Ex 3: Schr/NRCFT

(Schr¨odinger space(Schr)/NRCFT) hint : matching of symmetries

NRCFT0s Schr group isomorphic to isometry of Schr space . LHS:Schr¨odinger group=Galilean group + translation + scaling(dilatation) operator+special conformal operator.

Galilean group: Rotation(Mi ,j)+Galilean boost(Ki)

translation(Pµ: includes Hamiltonian P0= H and momentum Pi) scaling(dilatation) (D)

special conformal operator (C )

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(33)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Ex 3: Schr/NRCFT

(Schr¨odinger space(Schr)/NRCFT) hint : matching of symmetries

NRCFT0s Schr group isomorphic to isometry of Schr space . LHS:Schr¨odinger group=Galilean group + translation + scaling(dilatation) operator+special conformal operator.

Galilean group: Rotation(Mi ,j)+Galilean boost(Ki)

translation(Pµ: includes Hamiltonian P0= H and momentum Pi) scaling(dilatation) (D)

special conformal operator (C )

(34)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Ex 3: Schr/NRCFT

(Schr¨odinger space(Schr)/NRCFT) hint : matching of symmetries

NRCFT0s Schr group isomorphic to isometry of Schr space . LHS:Schr¨odinger group=Galilean group + translation + scaling(dilatation) operator+special conformal operator.

RHS: Embed Schr group in a higher dimensional Conformal group. FreeSchr¨odingereq inside FreeKlein-Gordoneq .

Light-cone coordinate t, ξ. Compactify ξ to give discrete mass tower. answer ds2= −r−2zdt2+ r−2(2dtd ξ + d~x2+ dr2)

(Son, Balasubramanian&McGreevy)

Ex: Bulk side Dictionary Boundary side

Schr/NRCFT (D+2)-dim gravity Schr/NRCFT D-dim NR field theory

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(35)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Ex 3: Schr/NRCFT

(Schr¨odinger space(Schr)/NRCFT) hint : matching of symmetries

NRCFT0s Schr group isomorphic to isometry of Schr space . LHS:Schr¨odinger group=Galilean group + translation + scaling(dilatation) operator+special conformal operator.

RHS: Embed Schr group in a higher dimensional Conformal group.

FreeSchr¨odingereq inside FreeKlein-Gordoneq .

Light-cone coordinate t, ξ. Compactify ξ to give discrete mass tower.

answer ds2= −r−2zdt2+ r−2(2dtd ξ + d~x2+ dr2)

(Son, Balasubramanian&McGreevy)

Ex: Bulk side Dictionary Boundary side

Schr/NRCFT (D+2)-dim gravity Schr/NRCFT D-dim NR field theory

(36)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Ex 3: Schr/NRCFT

(Schr¨odinger space(Schr)/NRCFT) hint : matching of symmetries

NRCFT0s Schr group isomorphic to isometry of Schr space . LHS:Schr¨odinger group=Galilean group + translation + scaling(dilatation) operator+special conformal operator.

RHS: Embed Schr group in a higher dimensional Conformal group.

FreeSchr¨odingereq inside FreeKlein-Gordoneq .

Light-cone coordinate t, ξ. Compactify ξ to give discrete mass tower.

answer ds2= −r−2zdt2+ r−2(2dtd ξ + d~x2+ dr2)

(Son, Balasubramanian&McGreevy)

Ex: Bulk side Dictionary Boundary side

Schr/NRCFT (D+2)-dim gravity Schr/NRCFT D-dim NR field theory

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(37)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What is HOLOGRAPHY ?

Ex 3: Schr/NRCFT

(Schr¨odinger space(Schr)/NRCFT) hint : matching of symmetries

NRCFT0s Schr group isomorphic to isometry of Schr space . LHS:Schr¨odinger group=Galilean group + translation + scaling(dilatation) operator+special conformal operator.

RHS: Embed Schr group in a higher dimensional Conformal group.

FreeSchr¨odingereq inside FreeKlein-Gordoneq .

Light-cone coordinate t, ξ. Compactify ξ to give discrete mass tower.

answer ds2= −r−2zdt2+ r−2(2dtd ξ + d~x2+ dr2)

(Son, Balasubramanian&McGreevy)

Ex: Bulk side Dictionary Boundary side

Schr/NRCFT (D+2)-dim gravity Schr/NRCFT D-dim NR field theory

(38)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

What isHOLOGRAPHY ? Ex 1,2,3:

Ex: Bulk side Dictionary Boundary side

Hologram 3D object Fourier Trans 2D image

AdS/CFT (D+1)-dim gravity AdS/CFT D-dim Rela field theory Schr/NRCFT (D+2)-dim gravity Schr/NRCFT D-dim NR field theory

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(39)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

Schr/NRCFT correspondence

Asymptotic Schr¨ odinger Spacetime

pure Schr spacetime

ds2= −r−2zdt2+ r−2(2dtd ξ + d~x2+ dr2)

Thepure Schr spacetimeprovides no temperature for boundary field theory, howeverasymptotic Schrwith black hole(BH) does.

Neutral Schr BHwith finite density (0 < r < rH):

By TsssT (Null Melvin twist) on neutral black D3branes of type IIB string. dsEin2

= K1/3

` − f +4(K −1)(f −1)2´dt2

Kr4 +1+fr2Kdt d ξ +K −1K d ξ2+d~rx22+f rdr22

. (arXiv: 0807.1099, 0807.1100, 0807.1111)

Charged Schr BHwith finite density (rH < r < ∞):

By TsssT (Null Melvin twist) on charge black D3branes of type IIB string. dsEin2

= K−1/3 KrR22

1−f 2−r2f

dt22(1−f )d ξ2+(1+f )dtd ξ

«

+Rr22(dx12+dx22)+Rr22drf2

!

(arXiv: 0907.1892, 0907.1920)

(40)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

Schr/NRCFT correspondence

Asymptotic Schr¨ odinger Spacetime

pure Schr spacetime

ds2= −r−2zdt2+ r−2(2dtd ξ + d~x2+ dr2)

Thepure Schr spacetimeprovides no temperature for boundary field theory, howeverasymptotic Schrwith black hole(BH) does.

Neutral Schr BHwith finite density (0 < r < rH):

By TsssT (Null Melvin twist) on neutral black D3branes of type IIB string. dsEin2

= K1/3

` − f +4(K −1)(f −1)2´dt2

Kr4 +1+fr2Kdt d ξ +K −1K d ξ2+d~rx22+f rdr22

. (arXiv: 0807.1099, 0807.1100, 0807.1111)

Charged Schr BHwith finite density (rH < r < ∞):

By TsssT (Null Melvin twist) on charge black D3branes of type IIB string. dsEin2

= K−1/3 KrR22

1−f 2−r2f

dt22(1−f )d ξ2+(1+f )dtd ξ

«

+Rr22(dx12+dx22)+Rr22drf2

!

(arXiv: 0907.1892, 0907.1920)

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(41)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

Schr/NRCFT correspondence

Asymptotic Schr¨ odinger Spacetime

pure Schr spacetime

ds2= −r−2zdt2+ r−2(2dtd ξ + d~x2+ dr2)

Thepure Schr spacetimeprovides no temperature for boundary field theory, howeverasymptotic Schrwith black hole(BH) does.

Neutral Schr BHwith finite density (0 < r < rH):

By TsssT (Null Melvin twist) on neutral black D3branes of type IIB string.

dsEin2

= K1/3

` − f +4(K −1)(f −1)2´dt2

Kr4 +1+fr2Kdt d ξ +K −1K d ξ2+d~rx22+drf r22

. (arXiv: 0807.1099, 0807.1100, 0807.1111)

Charged Schr BHwith finite density (rH < r < ∞):

By TsssT (Null Melvin twist) on charge black D3branes of type IIB string. dsEin2

= K−1/3 KrR22

1−f 2−r2f

dt22(1−f )d ξ2+(1+f )dtd ξ

«

+Rr22(dx12+dx22)+Rr22drf2

!

(arXiv: 0907.1892, 0907.1920)

(42)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

Schr/NRCFT correspondence

Asymptotic Schr¨ odinger Spacetime

pure Schr spacetime

ds2= −r−2zdt2+ r−2(2dtd ξ + d~x2+ dr2)

Thepure Schr spacetimeprovides no temperature for boundary field theory, howeverasymptotic Schrwith black hole(BH) does.

Neutral Schr BHwith finite density (0 < r < rH):

By TsssT (Null Melvin twist) on neutral black D3branes of type IIB string.

dsEin2

= K1/3

` − f +4(K −1)(f −1)2´dt2

Kr4 +1+fr2Kdt d ξ +K −1K d ξ2+d~rx22+drf r22

. (arXiv: 0807.1099, 0807.1100, 0807.1111)

Charged Schr BHwith finite density (rH < r < ∞):

By TsssT (Null Melvin twist) on charge black D3branes of type IIB string.

dsEin2

= K−1/3 KrR22

1−f 2−r2f

dt22(1−f )d ξ2+(1+f )dtd ξ

«

+Rr22(dx12+dx22)+Rr22drf2

!

(arXiv: 0907.1892, 0907.1920)

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(43)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

Asymptotic Schr¨odinger Spacetime pure Schr spacetime

ds2= −r−2zdt2+ r−2(2dtd ξ + d~x2+ dr2)

Thepure Schr spacetimeprovides no temperature for boundary field theory, howeverasymptotic Schrwith black hole(BH) does.

Neutral Schr BHwith finite density:

By TsssT (Null Melvin twist) on neutral black D3branes of type IIB string.

Charged Schr BHwith finite density:

By TsssT (Null Melvin twist) on charge black D3branes of type IIB string.

(44)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

Partition Function

Partition function and field operator correspondence

ZCFT[φ] = Zstring[ Φ|∂AdS] ' e−Ssupergravity. S → S +R d4x φ(x ) · O(x ) , (source · response) φ = Φ|∂AdS (operator-field)

S → S +R d4x A(x ) · J (x ) , (source · response) Aµ= Aµ|∂AdS (operator-field)

BosonOperators inNRCFT: scalar fieldin Schr

FermionOperators inNRCFT Dirac spinorfield inSchr

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(45)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

Partition Function

Partition function and field operator correspondence ZCFT[φ] = Zstring[ Φ|∂AdS] ' e−Ssupergravity.

S → S +R d4x φ(x ) · O(x ) , (source · response) φ = Φ|∂AdS (operator-field)

S → S +R d4x A(x ) · J (x ) , (source · response) Aµ= Aµ|∂AdS (operator-field)

BosonOperators inNRCFT: scalar fieldin Schr

FermionOperators inNRCFT Dirac spinorfield inSchr

(46)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

Partition Function

Partition function and field operator correspondence ZCFT[φ] = Zstring[ Φ|∂AdS] ' e−Ssupergravity.

S → S +R d4x φ(x ) · O(x ) , (source · response) φ = Φ|∂AdS (operator-field)

S → S +R d4x A(x ) · J (x ) , (source · response) Aµ= Aµ|∂AdS (operator-field)

BosonOperators inNRCFT: scalar fieldin Schr

FermionOperators inNRCFT Dirac spinorfield inSchr

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(47)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

Partition Function

Partition function and field operator correspondence ZCFT[φ] = Zstring[ Φ|∂AdS] ' e−Ssupergravity.

S → S +R d4x φ(x ) · O(x ) , (source · response) φ = Φ|∂AdS (operator-field)

S → S +R d4x A(x ) · J (x ) , (source · response) Aµ = Aµ|∂AdS (operator-field)

BosonOperators inNRCFT: scalar fieldin Schr

FermionOperators inNRCFT Dirac spinorfield inSchr

(48)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

Partition Function

Partition function and field operator correspondence ZCFT[φ] = Zstring[ Φ|∂AdS] ' e−Ssupergravity.

S → S +R d4x φ(x ) · O(x ) , (source · response) φ = Φ|∂AdS (operator-field)

S → S +R d4x A(x ) · J (x ) , (source · response) Aµ = Aµ|∂AdS (operator-field)

BosonOperators inNRCFT:

scalar fieldin Schr

FermionOperators inNRCFT Dirac spinorfield inSchr

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(49)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

Partition Function

Partition function and field operator correspondence ZCFT[φ] = Zstring[ Φ|∂AdS] ' e−Ssupergravity.

S → S +R d4x φ(x ) · O(x ) , (source · response) φ = Φ|∂AdS (operator-field)

S → S +R d4x A(x ) · J (x ) , (source · response) Aµ = Aµ|∂AdS (operator-field)

BosonOperators inNRCFT:

scalar fieldin Schr

FermionOperators inNRCFT Dirac spinorfield inSchr

(50)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Ex 1: Hologram Ex 2: AdS/CFT Ex 3: Schr/NRCFT

Asymptotic Schr¨odinger Spacetime Partition Function

Summary So Far:

Ex: Bulk side Dictionary Boundary side

Hologram 3D object Fourier Trans 2D image

AdS/CFT (D+1)-dim gravity AdS/CFT D-dim Rela field theory Schr/NRCFT (D+2)-dim gravity Schr/NRCFT D-dim NR field theory

Bulk side Dictionary Boundary side Boson scalar field field-operator Boson operator Fermion Dirac spinor field field-operator Fermion operator

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

(51)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Setup & Dictionary Superfluids from Schr BH Superfluids from Schr soliton

(I) Boson Operators in Schr/NRCFT

Focus on 5-dim Schr and 3-dim NRCFT correspondence at z = 2.

Setup:

Probe limit: Abelian Higgs model

S

probe,AH

= R d

5

x √

−g

Eine12

14

F

2

− |DΦ|

2

− m

2

|Φ|

2

 ,

φ = φ1r+ φ2r++ . . . ,

with conformal dimension ∆±= 2 ±p4 + m2+ q2Mo2. At= µQ+ ρQr2+ . . . ,

Aξ= Mo+ ρMr2+ . . . , Ax= A0+ A2r22 + . . . . Dictionary:

φ = Φ|∂AdS (operator-field correpondence).

Spontaneous Symmetry Breaking: turn off source, only left withresponse. φ1= 0, φ2= hO2i , or φ2= 0, φ1= hO1i forsuperfluid.

Conductivity: σ(ω) = hJhExi

xi = −iωhAhJxi

xi= −iωAA2

0

(52)

Introduction Boson Operators in Schr/NRCFT Fermion Operators in Schr/NRCFT B-F theory formalism of RG critical points Conclusion

Setup & Dictionary Superfluids from Schr BH Superfluids from Schr soliton

(I) Boson Operators in Schr/NRCFT

Focus on 5-dim Schr and 3-dim NRCFT correspondence at z = 2.

Setup:

Probe limit: Abelian Higgs model

S

probe,AH

= R d

5

x √

−g

Eine12

14

F

2

− |DΦ|

2

− m

2

|Φ|

2

 ,

φ = φ1r+ φ2r++ . . . ,

with conformal dimension ∆±= 2 ±p4 + m2+ q2Mo2. At = µQ+ ρQr2+ . . . ,

Aξ = Mo+ ρMr2+ . . . , Ax = A0+ A2r22 + . . . .

Dictionary:

φ = Φ|∂AdS (operator-field correpondence).

Spontaneous Symmetry Breaking: turn off source, only left withresponse. φ1= 0, φ2= hO2i , or φ2= 0, φ1= hO1i forsuperfluid.

Conductivity: σ(ω) = hJhExi

xi = −iωhAhJxi

xi= −iωAA2

0

Juven Wang (MIT) Holographic View on non-relativistic Superfluids, Fermi Surfaces and RG fixed points

參考文獻

相關文件

vector space finite dimensional inner product space over field C R, 再.

在這一節中, 我們介紹 change of basis 的概念, 了解到一個 linear operator 換了 ordered basis

Keywords: Finite volume method; Heterostructure; Large scale polynomial eigenvalue problem; Semiconductor pyramid quantum dot;.. Schr€

We further want to be able to embed our KK GUTs in string theory, as higher dimensional gauge theories are highly non-renormalisable.. This works beautifully in the heterotic

Myers effect condensation of mean field D(-1) Chern Simons term is induced. Fuzzy sphere is

Lecture 1: Introduction and overview of supergravity Lecture 2: Conditions for unbroken supersymmetry Lecture 3: BPS black holes and branes. Lecture 4: The LLM bubbling

• A powerful means of classifying and constructing new supersymmetric backgrounds was pioneered by Gauntlett, Gutowski, Martelli, Pakis, Sparks, Tod, Waldram... Gauntlett et

introduction to continuum and matrix model formulation of non-critical string theory.. They typically describe strings in 1+0 or 1+1 dimensions with a