• 沒有找到結果。

Operators on Inner Product Spaces

N/A
N/A
Protected

Academic year: 2022

Share "Operators on Inner Product Spaces"

Copied!
41
0
0

加載中.... (立即查看全文)

全文

(1)

大學線性代數再探

大學數學

(2)

大 學 線性代數 .

linear operator . 線性代數 , 性 .

linear transformation 性 , 再 . 代數

field 性 over field polynomial ring 代數 (

).

, ,

代. , .

, . , 性

, . , .

, 大 . 大

, . ,

.

v

(3)

Chapter 5

Operators on Inner Product Spaces

inner product spaces linear operators 性 . inner

product spaces vector spaces , 探

linear operators. inner product spaces, vector

spaces vector space over C R.

5.1. Inner Product Spaces

, inner product space 性 .

Real inner product space.

Definition 5.1.1. V vector space overR. 數 ⟨, ⟩ : V ×V → R

, V inner product.

(1) ⟨v,w⟩ = ⟨w,v⟩, ∀v,w ∈ V.

(2) ⟨rv + sw,u⟩ = r⟨v,u⟩ + s⟨w,u⟩, ∀u,v,w ∈ V and r,s ∈ R.

(3) ⟨v,v⟩ ≥ 0, ∀v ∈ V. ⟨v,v⟩ = 0 v = OV. V real inner product space.

complex , , z∈ C, z z conjugate ( 數).

Definition 5.1.2. V vector space overC. 數 ⟨, ⟩ : V ×V → C

, V inner product.

(1) ⟨v,w⟩ = ⟨w,v⟩, ∀v,w ∈ V.

(2) ⟨rv + sw,u⟩ = r⟨v,u⟩ + s⟨w,u⟩, ∀u,v,w ∈ V and r,s ∈ C.

(3) ⟨v,v⟩ ≥ 0, ∀v ∈ V. ⟨v,v⟩ = 0 v = OV.

105

(4)

V complex inner product space.

, vector space inner product. V inner product

space, inner product.

Example 5.1.3. Rn

⟨(x1, . . . , xn), (y1, . . . , yn)⟩ = x1y1+··· + xnyn,

Rn standard inner product. inner product , Rn n-dimensional Euclidean space.

Cn

⟨(x1, . . . , xn), (y1, . . . , yn)⟩ = x1y1+··· + xnyn,

Cn standard inner product. inner product , Cn n-dimensional unitary space.

Question 5.1. V over C inner product space. V vector space over R, V over R inner product space?

real inner product space , (1) 性, (2)

u, v, w∈ V r, s∈ R

⟨u,rv + sw⟩ = r⟨u,v⟩ + s⟨u,w⟩.

v, v, w, w∈ V r, r, s, s∈ R

⟨rv + rv, sw + sw⟩ = r⟨v,sw + sw⟩ + r⟨v, sw + sw

= rs⟨v,w⟩ + rs⟨v,w⟩ + rs⟨v, w⟩ + rs⟨v, w (5.1)

complex , (1), (2) u, v, w∈ V r, s∈ C

⟨u,rv + sw⟩ = ⟨rv + sw,u⟩ = r⟨v,u⟩ + s⟨w,u⟩ = r⟨u,v⟩ + s⟨u,w⟩.

v, v, w, w∈ V r, r, s, s∈ C

⟨rv + rv, sw + sw⟩ = r⟨v,sw + sw⟩ + r⟨v, sw + sw

= rs⟨v,w⟩ + rs⟨v,w⟩ + rs⟨v, w⟩ + rs⟨v, w (5.2) inner product ,⟨v,v⟩ = 0 v = OV, 性 non-degenerate.

性 .

Lemma 5.1.4. V inner product space v∈ V ⟨v,w⟩ = 0, ∀w ∈ V, v = OV.

Proof. w = v, ⟨v,v⟩ = 0. inner product v = OV. 

(5)

5.1. Inner Product Spaces 107

Lemma 5.1.4 V OV . v, u∈ V,

⟨v,w⟩ = ⟨u,w⟩, ∀w ∈ V,

⟨v − u,w⟩ = ⟨v,w⟩ − ⟨u,w⟩ = 0

v = u. 性 .

Corollary 5.1.5. V inner product space. v, u∈ V ⟨v,w⟩ = ⟨u,w⟩, ∀w ∈ V, v = u.

Lemma 5.1.4 linear operator, 性 .

real complex .

Proposition 5.1.6. V inner product space T : V → V linear operator.

(1) V real inner product space, ⟨T(v),w⟩ = 0, ∀v,w ∈ V T zero mapping.

(2) V complex inner product space, ⟨T(v),v⟩ = 0, ∀v ∈ V T zero mapping.

Proof. v∈ V, ⟨T(v),w⟩ = 0, ∀w ∈ V, Lemma 5.1.4 T (v) = OV.

v∈ V , T = O.

complex , (5.2) v, w∈ V r∈ C

0 = ⟨T(rv + w),rv + w⟩

= ⟨rT(v) + T(w),rv + w⟩

= rr⟨T(v),v⟩ + r⟨T(v),w⟩ + r⟨T(w),v⟩ + ⟨T(w),w⟩

= r⟨T(v),w⟩ + r⟨T(w),v⟩

代 r = 1 r =√

−1, ⟨T(v),w⟩ + ⟨T(w),v⟩ = 0 ⟨T(v),w⟩ − ⟨T(w),v⟩ = 0.

⟨T(v),w⟩, ∀v,w ∈ V.T = O. 

V inner product space, over R over C,

Cauchy-Schwarz inequality.

Lemma 5.1.7. V inner product space over F, F =R C.

v∈ V ∥v∥ =

⟨v,v⟩, v, w∈ V,

|⟨v,w⟩| ≤ ∥v∥∥w∥.

|⟨v,w⟩| = ∥v∥∥w∥ v, w OV r∈ F v = rw.

Proof. v, w OV, . v, w OV.

r∈ F, F R (5.1)

0≤ ⟨v − rw,v − rw⟩ = ⟨v,v⟩ − 2r⟨v,w⟩ + r2⟨w,w⟩.

(6)

r =⟨v,w⟩/⟨w,w⟩,

⟨v,w⟩2

⟨w,w⟩ ≤ ⟨v,v⟩.

F C (5.2)

0≤ ⟨v − rw,v − rw⟩ = ⟨v,v⟩ − r⟨w,v⟩ − r⟨v,w⟩ + rr⟨w,w⟩.

r =⟨v,w⟩/⟨w,w⟩ ( r =⟨v,w⟩/⟨w,w⟩, ⟨w,w⟩ ∈ R),

⟨v,w⟩⟨v,w⟩

⟨w,w⟩ ≤ ⟨v,v⟩.

F =C ⟨v,w⟩⟨v,w⟩ = |⟨v,w⟩|2 inequality.

r∈ F ⟨v − rw,v − rw⟩ = 0 v = rw. 

inner product , norm. 性

:

Proposition 5.1.8. V inner product space over F (F =R C).

v∈ V ∥v∥ =

⟨v,v⟩,:

(1) ∥v∥ ≥ 0 ∥v∥ = 0 v = OV.

(2) r∈ F v∈ V, ∥rv∥ = |r|∥v∥.

(3) v, w∈ V, ∥v + w∥ ≤ ∥v∥ + ∥w∥.

Proof. (1) inner product 性 (3) , (2) (5.1), (5.2) , (3). ⟨v + w,v + w⟩ = ⟨v,v⟩ + 2⟨v,w⟩ + ⟨w,w⟩, Lemma 5.1.7

∥v + w∥2=⟨v + w,v + w⟩ ≤ ∥v∥2+ 2∥v∥∥w∥ + ∥w∥2= (∥v∥ + ∥w∥)2,

∥v + w∥ ≤ ∥v∥ + ∥w∥. 

Proposition 5.1.8 (3) 性 (triangle inequality). vector

space V ,∥ ∥ : V → R Proposition 5.1.8 性 normed

linear space,∥ ∥ norm. inner product space

Proposition 5.1.8 norm normed linear space. norm

v, w∈ V, v, w (distance) d(v, w) =∥v − w∥. distance vector space metric space. inner product space metric space.

metric space , sequence .

, .

Question 5.2. V inner product space. Proposition 5.1.8 norm parallelogram law, v, w∈ V

∥v + w∥2+∥v − w∥2= 2∥v∥2+ 2∥w∥2.

(7)

5.1. Inner Product Spaces 109

Inner product space metric space, 性 (or-

thogonal) . .

Definition 5.1.9. V inner product space. v, w∈ V ⟨v,w⟩ = 0, v, w orthogonal, v⊥ w .

{v1, . . . , vn} V basis i̸= j vi⊥ vj, {v1, . . . , vn}

V orthogonal basis. orthogonal basis vi ∥vi∥ = 1, V

orthonormal basis.

⟨v,w⟩ = 0, ⟨w,v⟩ = 0, v⊥ w w⊥ v.

Question 5.3. equivalent relation? equivalent relation ? {w1, . . . , wn} V orthogonal basis, vi= ∥w1

iwi, {v1, . . . , vn} V orthonormal basis.

orthogonal basis ( orthonormal basis) {v1, . . . , vn} v∈ V v {v1, . . . , vn} linear combination. v = c1v1+··· + cnvn,

⟨v,vi⟩ = c1⟨v1, vi⟩ + ··· + cn⟨vn, vi⟩ = ci⟨vi, vi⟩,

ci= ⟨v,vi

⟨vi, vi⟩.

V finite dimensional , Gram-Schmidt orthogonalization process

V orthogonal basis ( orthonormal basis). process.

w1∈ V \ {OV} v1= w1. w2∈ V \ Span({w1}), v2= w2−⟨w2, v1

⟨v1, v1v1.

⟨v1, v2⟩ = 0 Span({v1, v2}) = Span({w1, w2}). Span({v1, v2}) = V, {v1, v2} V orthogonal basis. 再 w3∈ V \ Span({w1, w2}),

v3= w3

(⟨w3, v1

⟨v1, v1v1+⟨w3, v2

⟨v2, v2v2 )

.

⟨v1, v3⟩ = ⟨v2, v3⟩ = 0 Span({v1, v2, v3}) = Span({w1, w2, w3}). , wi∈ V \ Span({w1, . . . , wi−1}),

vi= wi

(⟨wi, v1

⟨v1, v1v1+··· + ⟨wi, vi−1

⟨vi−1, vi−1vi−1 )

.

⟨v1, vi⟩ = ··· = ⟨vi−1, vi⟩ = 0 Span({v1, . . . , vi}) = Span({w1, . . . , wi}). V

finite dimensional, . {v1, . . . , vn} V orthogonal

basis. 再 , 前 vi ∥vi−1 orthonormal basis.

, V basis{w1, . . . , wn}, wi∈ V \Span({w1, . . . , wi−1}),

process, V orthogonal basis.

(8)

W V subspace , W V subspace V = W⊕W,

W . inner product space , W

. .

Definition 5.1.10. V inner product space, S V nonempty subset.

S={v ∈ V | ⟨v,w⟩ = 0, ∀w ∈ S}.

S the orthogonal complement of S in V . Question 5.4. {OV}? V?

S 性 .

Lemma 5.1.11. V inner product space.

(1) S V nonempty subset, S V subspace.

(2) S1, S2 V nonempty subsets S1⊆ S2, S2 ⊆ S1. (3) S V nonempty subset, S= Span(S).

(4) W V subspace, W∩W={OV}.

Proof. V inner product space over F ( F =C F =R).

(1) OV ∈ S. v1, v2∈ S, r, s∈ F ⟨rv1+ sv2, w⟩ = r⟨v1, w⟩ + s⟨v2, w⟩ = 0, ∀w ∈ S. rv1+ sv2∈ S. S V subspace.

(2) v∈ S2, w∈ S2 ⟨v,w⟩ = 0. w∈ S1 S1⊆ S2, w∈ S2, v∈ S1, S2 ⊆ S1.

(3) S⊆ Span(S), (2) Span(S) ⊆ S. , v∈ S,

w∈ Span(S), c1, . . . , cn∈ F w1. . . , wn∈ S w = c1w1+···+cnwn,

⟨w,v⟩ = c1⟨w1, v⟩+···+cn⟨wn, v⟩ = 0. v∈ Span(S), S⊆ Span(S), S= Span(S).

(4) v∈ W ∩W, v⊥ v, ⟨v,v⟩ = 0. inner product 性 v = OV.

 Question 5.5. Lemma 5.1.11 (1) S V subspace, S V

subspace. (4) W V subspace?

Question 5.6. W1,W2 V subspaces, (W1+W2)= W1∩W2.

W V subspace Gram-Schmidt process W orthogonal

basis S ={w1, . . . , wk}. v∈ V

˜v = ⟨v,w1

⟨w1, w1w1+··· + ⟨v,wk

⟨wk, wkwk,

˜v∈ W wi ⟨v − ˜v,wi⟩ = 0. Lemma 5.1.11 (3)

v− ˜v ∈ S= Span(S)= W. 性 .

(9)

5.1. Inner Product Spaces 111

Proposition 5.1.12. V inner product space W V finite dimensional

subspace. v∈ V, ˜v∈ W.

(1) v− ˜v ∈ W

(2) w∈ W \ {˜v}, ∥v − ˜v∥ < ∥v − w∥.

(3) ∥˜v∥ ≤ ∥v∥.

Proof. W orthogonal basis S ={w1, . . . , wk}, v∈ V, 前 v− ˜v ∈ W. (1).

w∈ W, ˜v− w ∈ W,

⟨v − w,v − w⟩ = ⟨v − ˜v + ˜v − w,v − ˜v + ˜v − w⟩ = ⟨v − ˜v,v − ˜v⟩ + ⟨˜v − w, ˜v − w⟩.

∥v − w∥ ≥ ∥v − ˜v∥ ⟨˜v − w, ˜v − w⟩ = 0, w = ˜v. (2).

v− ˜v ∈ W ˜v∈ W,

⟨v,v⟩ = ⟨v − ˜v + ˜v,v − ˜v + ˜v⟩ = ⟨v − ˜v,v − ˜v⟩ + ⟨˜v, ˜v⟩.

∥˜v∥ ≤ ∥v∥. (3). 

Proposition 5.1.12 (2) ˜v W v , ˜v ,

W orthogonal basis . projW(v) ˜v the

projection of v on W . V finite dimensional, W V finite

dimensional subspace, Proposition 5.1.12 . W finite dimensional,

Proposition 5.1.12 .

Question 5.7. Proposition 5.1.12 ∥˜v∥ = ∥v∥ v∈ W.

v∈ V, v = v− projW(v) + projW(v). v− projW(v)∈ W projW(v)∈ W, V = W +W. Lemma 5.1.11 (4), W∩W={OV},

.

Theorem 5.1.13. V inner product space W V finite dimensional subspace.

V = W⊕W.

V finite dimensional, subspace finite dimensional,

Theorem 5.1.13 V subspace . W subspace,

V = W⊕ (W). W = (W)?

Corollary 5.1.14. V inner product space W V finite dimensional subspace.

(W)= W.

(10)

Proof. w∈ W, v∈ W, ⟨w,v⟩ = 0, w∈ (W). W⊆ (W). v∈ (W), Theorem 5.1.13, v v = w + w, w∈ W w∈ W. v∈ (W), ⟨v,w⟩ = 0,

0 =⟨v,w⟩ = ⟨w,w⟩ + ⟨w, w⟩ = ⟨w, w⟩.

w= OV, v = w∈ W, (W)⊆ W. 

Question 5.8. inner product space subspace W ( finite dimensional) W=(

(W)) .

Question 5.9. V finite dimensional inner product space, S V subset.

(S) ? W1,W2 V subspace, (W1∩W2)= W1+W2 V subsets S, S, v∈ S,v∈ S ⟨v,v⟩ = 0, S⊥ S . , W,W V subspaces W ⊥ W, W⊆ W, Lemma 5.1.11

W∩W={OV}. W1, . . . ,Wk V subspaces V = W1+··· +Wk,

i̸= j, Wi⊥ Wj, V W1, . . . ,Wk direct sum. V orthogonal direct sum direct sum

V = W1 ··· Wk

. W V finite dimensional subspace, Theorem 5.1.13 V = WW.

5.2. Dual Spaces

Dual space inner product space 性, inner

product space 性 dual space . dual

space.

Definition 5.2.1. V vector space over F, f : V → F F-linear transformation, f linear functional on V . linear functional on V

vector space over F, V dual space, V .

Question 5.10. n× n determinant 數 det : Mn(F)→ F tracetr : Mn(F)→ F. linear functional on Mn(F)?

V basis, {v1, . . . , vn} w1, . . . , wn∈ W,

linear transformation T : V → W T (vi) = wi,∀i = 1,...,n. i = 1, . . . , n vi : V → F linear function on V ,

vi(vj) =

{ 1, if j = i;

0, if j̸= i.

性 .

(11)

5.2. Dual Spaces 113

Theorem 5.2.2. {v1, . . . , vn} V basis, {v1, . . . , vn} V basis.

, dim(V ) = dim(V).

Proof. Span({v1, . . . , vn}) = V. f ∈ V, c1, . . . , cn∈ F f = c1v1+···+cnvn. 前 linear transformation basis 性 ,

c1, . . . , cn∈ F f c1v1+···+cnvn vi . vi,

(c1v1+··· + cnvn)(vi) = c1v1(vi) +··· + cnvn(vi) = civi(vi) = ci. (5.3) ci= f (vi), f = c1v1+··· + cnvn.

{v1, . . . , vn} linearly independent. c1v1+··· + cnvn = O zero mapping. vi, (c1v1+··· + cnvn)(vi) = 0, (5.3) ci = 0,

∀i = 1,...,n. 

V basis{v1, . . . , vn}, {v1, . . . , vn} {v1, . . . , vn} dual basis.

Question 5.11. {v1, . . . , vn} V basis, v∈ V, vi(v) ?

V F-space, V dual space ? (V)( V double

dual space). (V) linear functional on V. σ ∈ (V),

σ : V→ F linear transformation f∈ V F . , v∈ V,

ˆv : V→ F f ∈ V, ˆv( f ) = f (v). ˆv∈ (V), ˆv linear functional, f , g∈ V r, s∈ F,

ˆv(r f + sg) = (r f + sg)(v) = r f (v) + sg(v) = r ˆv( f ) + sˆv(g).

Theorem 5.2.2 V finite dimensional , dim(V ) = dim(V),

dim(V) = dim((V)). dim(V ) = dim((V)). V (V) isomorphic,

ˆv V (V) isomorphism, V (V)

canonical map

Proposition 5.2.3. τ : V → (V) τ(v) = ˆv, ∀v ∈ V. τ one-to-one linear transformation. V finite dimensional , τ isomorphism.

Proof. τ linear transformation. v, w∈ V r, s∈ F τ(rv + sw)( f ) = f (rv + sw) = r f (v) + s f (w) = (rτ(v) + sτ(w))( f ), ∀ f ∈ V,

τ(rv + sw) rτ(v) + sτ(w) V 數, τ(rv + sw) =

rτ(v) + sτ(w).

τ one-to-one, Ker(τ) = OV. v∈ Ker(τ), τ(v) = ˆv V zero mapping. f∈ V 0 = ˆv( f ) = f (v). v̸= OV,

f∈ V f (v)̸= 0. v = OV.

(12)

V finite dimensional, τ :V → (V) one-to-one dim(V ) = dim((V)),

τ onto, τ isomorphism. 

dual space orthogonal complement , .

Definition 5.2.4. V vector space, S V nonempty subset.

S0={ f ∈ V| f (v) = 0, ∀v ∈ S}.

S0 the annihilator of S.

Question 5.12. {OV}0? V0?

S0 Lemma 5.1.11 性 .

Lemma 5.2.5. V vector space over F.

(1) S V nonempty subset, S0 V subspace.

(2) S1, S2 V nonempty subsets S1⊆ S2, S02⊆ S01. (3) S V nonempty subset, S0= Span(S)0.

Proof.

(1) V zero mapping O S0. f , g∈ S0, r, s∈ F

r f + sg(v) = r f (v) + sg(v) = 0, ∀v ∈ S. r f + sg∈ S0. S0 V subspace.

(2) f∈ S02, w∈ S2 f (w) = 0. w∈ S1 S1⊆ S2, w∈ S2, f∈ S01, S02⊆ S01.

(3) S⊆ Span(S), (2) Span(S)0⊆ S0. , f ∈ S0, w

Span(S), c1, . . . , cn∈ F w1. . . , wn∈ S w = c1w1+··· + cnwn, f (w) = c1f (w1) +··· + cnf (wn) = 0. f ∈ Span(S)0, S0⊆ Span(S)0, S0= Span(S)0.

 V finite dimensional inner product space, W V subspace, Theorem

5.1.13 dim(W) = dim(V )− dim(W). annihilator 性 .

Proposition 5.2.6. V = W⊕U. isomorphismϕ : U→ W0. V finite dimensional, subspace W dim(W0) = dim(V )− dim(W).

Proof. direct sum 性 , v∈ V, w∈ W,u ∈ U v = w + u.

f ∈ U, ϕ( f ) : V → F ϕ( f )(w + u) = f (u). f linear functional

ϕ( f ) linear functional, ϕ( f ) ∈ V. w∈ W,

w = w + OU, ϕ( f )(w) = f (OU) = 0, ϕ( f ) ∈ W0. ϕ : U→ W0

(13)

5.2. Dual Spaces 115

well-defined function. ϕ linear transformation. f , g∈ U f ̸= g, u∈ U f (u)̸= g(u), ϕ( f )(u) ̸= ϕ(g)(u), ϕ( f ) ̸= ϕ(g), ϕ

one-to-one. ϕ onto f ∈ W0, f (v) = f (w + u) = f (u),

w∈ W,u ∈ U v = w + u. f|U∈ U, ϕ( f |U) = f , ϕ onto.

V finite dimensional, subspace W , W basis

{w1, . . . , wk}V basis {w1, . . . , wk, u1, . . . , ul}. V = W⊕U, U = Span({u1, . . . , ul}). Theorem 5.2.2 ,

dim(W0) = dim(U) = dim(U ) = dim(V )− dim(W).

 Question 5.13. W1,W2 V subspaces, (W1+ W2)0= W10∩W20. V finite dimensional, (W1∩W2)0= W10+W20.

W0 V subspace, W0 annihilator, (W0)0. Corollary 5.1.14 性 .

Corollary 5.2.7. V finite dimensional vector space, W V subspace.

canonical map τ : V → (V) τ(v) = ˆv, ∀v ∈ V, τ(W) = (W0)0.

Proof. w∈W, f∈W0, w( f ) = f (w) =ˆ 0, τ(w) = ˆw ∈ (W0)0. τ(W) ⊆ (W0)0. Proposition 5.2.3, τ : V → (V) one-to-one, dim(τ(W)) = dim(W ). Proposition 5.2.6

dim((W0)0) = dim(V)− dim(W0) = dim(V )− (dim(V) − dim(W)) = dim(W).

dim(τ(W)) = dim((W0)0), τ(W) = (W0)0. 

探 dual space inner product space . .

Definition 5.2.8. V,W vector spaces over F, F C R. T : V → W v, v∈ V, r ∈ F T (v + v) = T (v) + T (v) T (rv) = rT (v), T

conjugate transformation. T one-to-one and onto, conjugate isomorphism.

F =R , conjugate transformation linear transformation. F =C conjugate transformation linear transformation ,

conjugate transformation 性 .

Lemma 5.2.9. V,W,U vector spaces overC. T1: V → W, T2: W → U.

(1) T1, T2 linear transformation conjugate transformation, T2◦ T1: V → U conjugate transformation.

(2) T1, T2 conjugate transformation, T2◦T1: V→ U linear transformation.

(14)

(3) T1 conjugate isomorphism, T1−1: W → V conjugate isomorphism.

Proof.

(1) T1 conjugate transformation T2 linear transformation ,

, . v, v∈ V r, s∈ C T2◦ T1(rv + sv) =

rT2◦ T1(v) + sT2◦ T1(v).

T2◦ T1(rv + sv) = T2(rT1(v) + sT1(v)) = rT2(T1(v)) + sT2(T1(v)) = rT2◦ T1(v) + sT2◦ T1(v).

T2◦ T1 conjugate transformation.

(2) T1, T2 conjugate transformation, v, v∈ V r, s∈ C T2◦ T1(rv + sv) = rT2◦ T1(v) + sT2◦ T1(v).

T2◦ T1(rv + sv) = T2(rT1(v) + sT1(v)) = (r)T2(T1(v)) + (s)T2(T1(v)) = rT2◦ T1(v) + sT2◦ T1(v).

T2◦ T1: V → U linear transformation.

(3) T1 conjugate isomorphism, T1 one-to-one and onto, T1−1: W → V

T1(T1−1(w)) = w,∀w ∈ W. w, w∈ W r, s∈ C, T1(T1−1(rw + sw)) = rw + sw

T1(rT−1(w) + sT−1(w)) = (r)T1(T−1(w)) + (s)T1(T−1(w)) = rw + sw, T1(T−1(rw + sw)) = T1(rT−1(w) + sT−1(w)). T1 one-to-one,

T−1(rw + sw) = rT−1(w) + sT−1(w).

T1−1 conjugate isomorphism. 

V inner product space over F, v∈ V,ρ(v) : V → F w7→ ⟨w,v⟩, ( ρ(v) = ⟨·,v⟩) ρ(v) linear functional on V , ρ(v) ∈ V. ρ

V V mapping. v, v∈ V,

ρ(v + v)(w) =⟨w,v + v⟩ = ⟨w,v⟩ + ⟨w,v⟩ =ρ(v)(w) + ρ(v)(w), ∀w ∈ V.

ρ(v + v) =ρ(v) + ρ(v) in V. r∈ F,

ρ(rv)(w) = ⟨w,rv⟩ = r⟨w,v⟩ = rρ(v)(w), ∀w ∈ V.

ρ(rv) = rρ(v) in V. .

Proposition 5.2.10. V finite dimensional inner product space. ρ : V → V ρ(v) = ⟨·,v⟩, ρ conjugate isomorphism.

Proof. ρ conjugate transformation, ρ one-to-one and onto.

ρ one-to-one. v, v ∈ V ρ(v) = ρ(v), ⟨w,v⟩ = ⟨w,v⟩,

∀w ∈ V. Corollary 5.1.5 v = v, ρ one-to-one.

(15)

5.3. Transpose and Adjoint 117

ρ onto, V orthonormal basis{v1, . . . , vn}. f ∈ V, v = f (v1)v1+··· + f (vn)vn.

ρ(v)(vi) =⟨vi, f (v1)v1+··· + f (vn)vn⟩ = ⟨vi, f (vi)vi⟩ = f (vi), ∀i ∈ {1,...,n}.

f ρ(v) {v1, . . . , vn} basis , f =ρ(v). ρ

onto. 

ρ conjugate isomorphism, Lemma 5.2.9 ρ−1: V→ V conjugate isomorphism.

Question 5.14. Proposition 5.2.10 ρ : V → V one-to-one dim(V ) = dim(V) ρ : V → V onto ?

Example 5.2.11. Rn standard inner product, {e1, . . . , en} Rn standard basis. v = x1e1+···+xnen∈ Rn, ρ(v)(ei) =⟨ei, v⟩ = xi. ρ(v) = f ∈ (Rn),

f (ei) = xi,∀i ∈ {1,...,n}. , f∈ (Rn), ρ−1( f ) = f (e1)e1+··· + f (en)en. Cn standard inner product, {e1, . . . , en} Cn standard basis.

v = z1e1+··· + znen∈ Cn, ρ(v)(ei) =⟨ei, v⟩ = zi. ρ(v) = f ∈ (Cn), f (ei) = zi,∀i ∈ {1,...,n}. , f∈ (Cn), ρ−1( f ) = f (e1)e1+··· + f (en)en. 5.3. Transpose and Adjoint

linear operator, transpose adjoint 性 ,

linear transformation . linear

transformation. linear transformation T : V → W, dual spaces W,V

T transpose, V,W inner product space, T adjoint.

探 transpose adjoint .

linear transformation T : V→ W transpose, V,W vector

space over F. 再 T transpose V,W inner product space

finite dimensional. f∈ W, T, f linear transformation, f◦ T : V → F linear transformation. f◦ T ∈ V.

mapping Tt : W→ V, Tt( f ) = f◦ T, ∀ f ∈ W. , f , g∈ W, r, s∈ F

Tt(r f + sg) = (r f + sg)◦ T = r( f ◦ T) + s(g ◦ T) = rTt( f ) + sTt(g),

Tt: W→ V linear transformation. Tt T transpose. T Tt , v∈ V, f ∈ W

f (T (v)) = Tt( f )(v).

transpose 性 .

Proposition 5.3.1. V,W,U vector space over F.

(16)

(1) r, s∈ F T1: V → W, T2: V → W linear transformations, (rT1+ sT2)t= rT1t+ sT2t.

(2) T1: V → W, T2: W→ U linear transformations, (T2◦ T1)t= T1t◦ T2t.

(3) (idV)t= idV, , T : V→ W isomorphism, Tt: W→ V isomor- phism

(Tt)−1= (T−1)t. Proof.

(1) f ∈ W, f linear,

(rT1+ sT2)t( f ) = f◦ (rT1+ sT2) = r( f◦ T1) + s( f◦ T2) = rT1t( f ) + sT2t( f ) = (rT1t+ sT2t)( f ).

(rT1+ sT2)t= rT1t+ sT2t.

(2) T2◦ T1 V U linear transformation, (T2◦ T1)t U V linear transformation. f∈ U,

(T2◦ T1)t( f ) = f◦ (T2◦ T1) = ( f◦ T2)◦ T1= T1t( f◦ T2) = T1t(T2t( f )) = T1t◦ T2t( f ).

(T2◦ T1)t= T1t◦ T2t.

(3) f ∈ V, (idV)t( f ) = f◦ idV = f , (idV)t= idV. T : V → W isomorphism, T−1◦ T = idV T◦ T−1= idW. (2)

idV = (idV)t= Tt◦ (T−1)t, idW= (idW)t= (T−1)t◦ Tt,

Tt isomorphism (Tt)−1= (T−1)t. 

linear transformation kernel image transpose

kernel image . vector space , 探

finite dimensional .

Proposition 5.3.2. V,W finite dimensional vector space, T : V → W linear transformation, Tt: W→ V transpose.

Ker(Tt) = Im(T )0, Im(Tt) = Ker(T )0.

Proof. f∈ Ker(Tt), Tt( f ) = f◦ T = O in V. v∈ V, Tt( f )(v) = f (T (v)) = 0. f∈ {T(v) | v ∈ V}0= Im(T )0. , f ∈ Im(T)0, v∈ V, f (T (v)) = 0, Tt( f ) = O in V, f∈ Ker(Tt).

, f∈ Im(Tt), g∈ W f = Tt(g) = g◦ T. v∈ Ker(T), f (v) = g(T (v)) = g(OW) = 0. f ∈ Ker(T)0, Im(Tt)⊆ Ker(T)0. Tt: W→ V linear transformation, Theorem 5.2.2

dim(Im(Tt)) = dim(W)− dim(Ker(Tt)) = dim(W )− dim(Ker(Tt)).

(17)

5.3. Transpose and Adjoint 119

Ker(Tt) = Im(T )0 Proposition 5.2.6

dim(Ker(Tt)) = dim(Im(T )0) = dim(W )− dim(Im(T)),

dim(Im(Tt)) = dim(Im(T )).

T : V → W linear transformation, dim(Ker(T )) = dim(V )− dim(Im(T)), 再 Proposition 5.2.6

dim(Ker(T )0) = dim(V )− dim(Ker(T)) = dim(Im(T)).

dim(Im(Tt)) = dim(Ker(T )0), Im(Tt) = Ker(T )0.  Question 5.15. Proposition 5.3.2 dim(Im(Tt)) = dim(Im(T )).

dim(Ker(Tt)) = dim(Ker(T ))?

Tt: W→ V linear transformation, Tt transpose, (Tt)t: (V)→ (W). V finite dimensional, isomorphism τV : V → (V), v∈ V, τV(v) = ˆv ˆv( f ) = f (v), ∀ f ∈ V.

:

V −−−−−−→T W



yτV yτW (V) (T

t)t

−−−−−−→ (W)

v∈ V, (Tt)tV(v)) = ˆv◦ Tt∈ (W). f ∈ W,

(Tt)tV(v))( f ) = ˆv◦ Tt( f ) = ˆv( f◦ T) = f ◦ T(v) = f (T(v)).

T (v)∈ W, τW(T (v)) = dT (v)∈ (W). f ∈ W, τW(T (v))( f ) = dT (v)( f ) = f (T (v)).

(Tt)tV(v)) =τW(T (v)), ∀v ∈ V,

(Tt)tτVW◦ T.

commutative diagram. 再 τV isomorphism, τV−1: (V)→ V ( isomorphism). .

Proposition 5.3.3. V,W finite dimensional vector space, T : V → W linear transformation. τV τW V, (V) W, (W) canonical map.

(Tt)tW◦ T ◦τV−1.

Linear transformation T : V → W T transpose Tt: W→ V V,W ordered basis dual basis representative matrix .

(18)

Proposition 5.3.4. β = (v1, . . . , vn),γ = (w1, . . . , wm) V,W ordered basis β= (v1, . . . , vn),γ= (w1, . . . , wm) dual basis V,W ordered basis. Linear transformation T : V → W,

β[Tt]γ=γ[T ]tβ.

Proof. Tt(wi) = wi ◦ T ∈ V, wi ◦ T = c1,iv1+··· + cn,ivn, cj,i= wi ◦ T(vj) = wi(T (vj)).

T (vj) = d1, jw1+··· + dm, jwm, cj,i= di, j. cj,i β[Tt]γ ( j, i)-th entry, di, j γ[T ]β (i, j)-th entry, β[Tt]γ=γ[T ]tβ. 

Proposition 5.3.4, linear transformation transpose matrix transpose . Proposition 5.3.1, 5.3.2, 5.3.3 matrix transpose

性 .

Question 5.16. β = (v1, . . . , vn),γ = (w1, . . . , wm) V,W ordered basis β = ( bˆ v1, . . . ,vbn), ˆγ = (cw1, . . . ,wcm) (V), (W) ordered basis, vbiV(vi),cwj= τW(wj) (τV : V → (V), τW : W → (W) canonical maps.) Proposition 5.3.3, 5.3.4

(γ[T ]tβ)t=γˆ[(Tt)t]βˆ =γ[T ]β.

linear transformation T : V → W adjoint. 再 adjoint V,W finite dimensional inner product spaces. ,

ρV : V→ VW: W→ W ρV(v) =⟨·,v⟩,∀v ∈ V ρW(w) =⟨·,w⟩,∀w ∈ W ρV,ρW conjugate isomorphism. T adjoint T: W→ V

TV−1◦ TtρW.

言 w∈ W,

T(w) =ρV−1ρW(w)◦ T =ρV−1(⟨T(·),w⟩).

Lemma 5.2.9 (1) TtρW : W → V conjugate transformation, 再 Lemma 5.2.9 (2) T: W→ V linear transformation. commutative diagram.

VyρV ←−−−−−− WT yρW

V ←−−−−−− WTt

Theorem 5.3.5. V,W finite dimensional inner product space, T : V → W linear transformation. T transpose T: W → V, linear transformation

⟨T(v),w⟩ = ⟨v,T(w)⟩, ∀v ∈ V,w ∈ W.

參考文獻

相關文件

大 finite generated vector space subspace finitely

利用這種說法一個 vector space 的 一組 basis 利用 Proposition 1.5.4 便可以說成就是該 vector space 中所有 spanning set 的 minimal element; 也可以說是該 vector

The physicists proposed that these six dimensions were curled up into a miniscule space, which they called Calabi-Yau space — part of the same family of spaces, which Calabi

In fact, while we will be naturally thinking of a one-dimensional lattice, the following also holds for a lattice of arbitrary dimension on which sites have been numbered; however,

we often use least squares to get model parameters in a fitting problem... 7 Least

Compensates for deep fades via diversity techniques over time, frequency and space. (Glass is

• Thresholded image gradients are sampled over 16x16 array of locations in scale space. • Create array of

Using this, one can obtain a weaker notion of isomorphism of vector bundles by defining two vector bun- dles over the same base space X to be stably isomorphic if they become