• 沒有找到結果。

Vehicular  Networks  –  What  can  communications  do  for  vehicles?

N/A
N/A
Protected

Academic year: 2022

Share "Vehicular  Networks  –  What  can  communications  do  for  vehicles?"

Copied!
70
0
0

加載中.... (立即查看全文)

全文

(1)

Mobile and Vehicular Network Lab

Vehicular  Networks  –  

What  can  communications  do   for  vehicles?

Prof.  Michael  Tsai  

2015/6/5

(2)

Mobile and Vehicular Network Lab

Future  cars

•  GM  EN-­‐V  video

2

(3)

Mobile and Vehicular Network Lab

Vehicle  Talks.

•  Safety  related  

–  Warn  you  about  an  accident   ahead  (emergency  brake)  

–  Tell  you  a  component  in  your  car  is   about  to  fail  

•  Energy  related  

–  Provide  routing    to  avoid  a  traffic   jam  

–  Smart  traffic  light     (or,  “no  traffic  light”)  

•  Information  and  entertainment     (“Infotainment”)  

–  Advertisement  

–  Electronic  toll  collection  

–  Social  networking  for  passengers   –  Internet  connection  

3

(4)

Mobile and Vehicular Network Lab

How  do  they  talk?

•  “Blackbox”  (On-­‐Board  Unit,  OBU)  with  wireless   radios  

•  Direct  Vehicle-­‐to-­‐Vehicle  (V2V)  Communications  

–  IEEE  802.11p:  designed  for  wireless  access  in   vehicular  environments  (WAVE)  

–  IEEE  1609:  Higher  layer  protocols  and  operations   –  Dedicated  Short  Range  Communications  (DSRC):  

U.S.  standard  for  vehicular  communications  

•  Via  Pre-­‐deployed  Infrastructure  (V2I)  

–  Cellular  Networks,  e.g.,   Long  Term  Evolution  (LTE)  

–  Road-­‐side  Unit  (RSU)  with  V2V  radio

4

(5)

Mobile and Vehicular Network Lab

Vehicular  Networks

5

(6)

Mobile and Vehicular Network Lab

DSRC/WAVE/802.11p

•  PHY  layer  almost  identical  to  IEEE  802.11a    

•  OFDM  using  BPSK/QPSK/16  QAM/64  QAM    

•  Reduced  inter  symbol  interference  (multipath  effects  and   Doppler  shift)  

–  Doubled  timing  parameters  (double  the  time  durations)   –  Channel  bandwidth  (10  MHz  instead  of  20  MHz)    

•  Reduced  throughput  (3  ...  27  Mbit/s  instead  of  6  ...  54  Mbit/

s)    

•  Communication  range  of  up  to  1000  m    

•  Vehicles’  velocity  up  to  200  km/h    

–  MAC  layer  with  extensions  to  IEEE  802.11a     –  Randomized  MAC  address    

–  QoS  (Priorities,  see  IEEE  802.11e,  ...)  

•  Support  for  multi-­‐channel  and  multi-­‐radio    

•  New  ad  hoc  mode   6

(7)

Mobile and Vehicular Network Lab

DSRC/WAVE/802.11p  

7  

(a)  WAVE  protocol  stack

(b)  DSRC  channel  allocation

(8)

Mobile and Vehicular Network Lab

Change  the  world     (on  the  road)

•  What  we  will  talk  about  today:  

0.    Google  driver-­‐less  car  (autonomous  vehicle)   1.  Increase  highway  capacity  (efficient)  

2.  Avoid  scooter  accidents  (safe)  

3.  Business  perspective  (whether  it  will  happen)

8

(9)

Mobile and Vehicular Network Lab

Blinds  can  drive

•  Google  car  video

9

(10)

Mobile and Vehicular Network Lab

What  is  in  Google  Car

Cost:    

•  Estimated  total:  

NT$  9  M  

•  3D  LIDAR  (laser   scanner):  over  NT

$2  M  

•  Video  cameras:  a   few  hundred  NT$  

•  Radar  sensors:  a   few  thousands  NT

$  

•  Processor  &  

others

10

(11)

Mobile and Vehicular Network Lab

Some  Statistics

•  In  April  2014,  the  team  announced  that  they  have   completed  over  300,000  autonomous-­‐driving  miles   (500,000  km)  accident-­‐free.  

•  4  U.S.  States,  Nevada,  Florida,  Michigan  and  

California,  have  passed  laws  that  permit  driverless   cars  on  the  road  as  of  December  2013.  

11

(12)

Mobile and Vehicular Network Lab

But  Google  Driverless  Cars  do  not  talk  (to  other   cars).  

 

12

(13)

Mobile and Vehicular Network Lab

Change  the  world     (on  the  road)

•  What  we  will  talk  about  today:  

0.    Google  driver-­‐less  car  (autonomous  vehicle)   1.  Increase  highway  capacity  (efficient)  

2.  Avoid  scooter  accidents  (safe)  

3.  Business  perspective  (whether  it  will  happen)

13

(14)

Mobile and Vehicular Network Lab

http://virginiaits.blogspot.com/  

http://2howto.com/how-­‐to-­‐cope-­‐with-­‐ever-­‐

rising-­‐traffic-­‐congestion-­‐in-­‐india/  

http://www.csee.umbc.edu/courses/

undergraduate/FYS102D/streetsmart.pdf  

Preventing  Congestion  

14

(15)

Mobile and Vehicular Network Lab

http://www.permatopia.com/

wetlands/traffic.html   http://semesterinthesouth.blogspot.com/

2008_04_01_archive.html  

http://english.peopledaily.com.cn/200701/05/

eng20070105_338437.html  

Preventing  Congestion  

15

(16)

Mobile and Vehicular Network Lab

Increase Road Efficiency 

•  Wugu-Yangmei Overpass (just completed in 2013)

(for National Freeway No. 1)

–  Cost: 88.2B TWD (3B USD) for 40 km of elevated road

- The most expensive road per km in Taiwan history –  Divert approximately 25% of traffic from the original

highway

–  Improve rush hour average speed:

- 40-50 kmph à 80-90 kmph

(17)

Mobile and Vehicular Network Lab

Increase Road Efficiency 

•  Maximum highway capacity per lane = 2,200 vehicle/hr

•  At 100 kmph, the road surface utilization = 5%

•  Automatic steering à reduce lane width

•  Longitudinal control (adaptive cruise control)

à reduce the gap

•  Drivers’ response delays cause stop and go disturbances

•  Only possible through cooperation with communications

45.5  m

5  m

3. 5   m  1.8  m 

(18)

Mobile and Vehicular Network Lab

Reduce Energy Consumption 

•  At highway speeds, HALF of energy is used to overcome aerodynamic drag

–  Close-formation automated platoons can save 10% to 20% of total energy use

•  Acceleration/deceleration cycles waste energy (and produce excess emissions)

–  Automation can eliminate stop-and-go disturbances

•  Again, only possible through

cooperation

(19)

Mobile and Vehicular Network Lab

Platooning

•  Small  gap  between  cars  in  a  platoon  

– Gentle  impacts  between  vehicles  in  faulty  cases  

•  Large  gap  between  platoons  

– Prevent  severe  impacts  in  faulty  cases  

•  Platoons  enable  lane  capacity  to  be  doubled   or  tripled,  while  maintaining  safety  

– 6000  –  8000  cars/hour  in  10-­‐car  platoons   – 1500  heavy  trucks/hour  in  3-­‐truck  platoons

19

(20)

Mobile and Vehicular Network Lab

Back  to  “what’s  wrong  with   Google  Car”

•  Cooperation  Can  Augment  Sensing  

–  Autonomous  vehicles  are  “deaf-­‐mute”  

–  Cooperative  vehicles  can  “talk”  and  “listen”  as  well  as  

“seeing”  

•  Communicate  performance  and  condition  data   directly  rather  than  sensing  it  indirectly  

–  Reduce  uncertainties   –  Reduce  filtering  lags  

–  More  sources  of  information  available,  including   beyond  line  of  sight  

•  Expand  performance  envelope  –  capacity  and  ride   quality

20

(21)

Mobile and Vehicular Network Lab

Change  the  world     (on  the  road)

•  What  we  will  talk  about  today:  

0.    Google  driver-­‐less  car  (autonomous  vehicle)   1.  Increase  highway  capacity  (efficient)  

2.  Avoid  scooter  accidents  (safe)  

3.  Business  perspective  (whether  it  will  happen)

21

(22)

Mobile and Vehicular Network Lab

What  is  available  in  today’s  car?

22

(23)

Mobile and Vehicular Network Lab

1.  Crash  –  post  crash   2.  Crash  is  unavoidable   3.  Crash  may  occur  

4.  Risk  has  appeared  

5.  Risk  has  not  yet  appeared

Risk



2 1 4 3

5

Larger Shield is SAFER!

For                :  

•  Blind  Spot  Information  System   (BLIS)  

•  Adaptive  Cruise  Control  (ACC)  

•  Forward  collision  warning  

•  Pedestrian  detection  

•  Lane  departure  warning  

We are here.

What can we do here?

The  “Safety  Shield”

5 4 3 2 1

4

23

(24)

Mobile and Vehicular Network Lab

Overcome  Visual  Obstacles

Conventional  Approach:  

Video  camera  and/or  radar  only Cooperative  approach:  

Sensors  +  Communications

Scooter  A

1 2

3

4

1

2 4

3 Detects  only  risks  with  a  LOS  path Detects  also  risks    

via  comm.  /  nLOS  path

3 4

Line-­‐Of-­‐Sight  blocked  by  a  bus

Line-­‐Of-­‐Sight  blocked  by  the  road  corner

2 1 I’m  merging  into  

the  middle  lane!

I’m  turning  right!

Be  careful  to  the   car  on  my  left!

24

(25)

Mobile and Vehicular Network Lab

Reduce  Uncertainty

•  Measurements  of  location/velocity   always  have  a  level  of  uncertainty  

•  Self-­‐information  is  the  most   accurate.  

•  Observation  from  nearby  vehicles     is  more  accurate  than  that  from   distant  vehicles.

3 1

2

1

2

3

Location     Uncertainty:  

Possible  Location

(e.g.,  vision-­‐based  localization)

25

(26)

Mobile and Vehicular Network Lab

Bring  Down  the  Cost

Individual  vehicle  does  not  need  to  have  total  sensor  coverage.

EXPENSIVE

Do  we  need  every  sensor  in  every  car?   Cost  down.  Energy  saving.  

CHEAP

26

(27)

Mobile and Vehicular Network Lab

1.  Crash  –  post  crash   2.  Crash  is  unavoidable   3.  Crash  may  occur  

4.  Risk  has  appeared  

5.  Risk  has  not  yet  appeared

Risk



2 1 4 3

5

•  Blind  Spot  Information  System   (BLIS)  

•  Adaptive  Cruise  Control  (ACC)  

•  Forward  collision  warning  

•  Pedestrian  detection  

•  Lane  departure  warning  

Next-­‐generation  Vehicle  Safety

Vehicle-­‐to-­‐Vehicle  technologies  eliminate   the  “gap”,  and  make  these  solutions  

applicable  to                    as  well!

5 4 3 2 1

5 27

(28)

Mobile and Vehicular Network Lab

Scooters  in  Taiwan

*http://www.epochtw.com      http://upload.wikimedia.org 28

•  In  Taiwan,  68.35%  of  registered  vehicles  are  scooters  or   motorcycles.  

•  Every  1.56  persons  own  a  scooter.  

(29)

Mobile and Vehicular Network Lab

Scooters  Around  the  World

29

Country Number  of  

Motorcycle/Scooter Number  of  Population  per  Scooter

Taiwan 14,844,932   1.56  

Malaysia 9,443,922   2.95  

Vietnam 25,414,689   3.38  

Thailand 17,229,814   3.88  

Indonesia 52,433,132   4.47  

Italy 9,425,098   6.39  

Spain 4,958,879   9.26  

Switzerland 806,577   9.60  

Japan 12,477,417   10.22  

Czech 903,346   11.61  

Austria 712,092   11.75  

China 100,004,714   13.35  

Netherlands 1,228,058   13.46  

Brazil 13,088,074   14.63  

USA 7,929,724   38.72  

United  Kingdom 1,433,124   43.13  

(30)

Mobile and Vehicular Network Lab

Scooter  Accidents  in  Taiwan

•  Scooter  passengers  account  for  most  deaths/injuries  

•  The  percentages  and  the  actual  numbers  are  both  rising!  

2003 2004 2005 2006 2007 2008 2009 2010 60

70 80 90 100

Year Percentage of Scooter Passenger Contribution (%)

1359 1361

1515

1793 1487 1310 1228 2089 2270 2548 1267

2708 2325 2152 2038 2110 119577 138720 157128 166389 174298 184616 201444 243089

Deaths occur within 24 hrs Deaths occur within 30 days Injuries

30

(31)

Mobile and Vehicular Network Lab

Safety  Features  in  

Off-­‐the-­‐Shelf  Vehicle  Product    

Car  Scooter

Active  Safety  Feature 1.  Anti-­‐lock  Breaking  System   (ABS)  

2.  Electronic  Brake-­‐Force   Distribution  (EBD)  

3.  Electronic  Stability  Control   (ESC)  /  Traction  Control   System  (TCS)

1.  Anti-­‐lock  Breaking   System  (ABS)  

2.  Traction  Control  System   (TCS)  

3.  Power  mode  map  

Passive  Safety  Feature 1.  Seat  belts   2.  Body  frame   3.  Head  restraints  

4.  Front  air  bags  (driver       passenger)  

5.  Side      curtain  air  bags  

1.  Full-­‐face  helmet   2.  Leather  suit  (jacket,  

gloves,  pants)   3.  Boots  

Not  common!

Open-­‐face  helmet  only Not  much  development! 31

(32)

Mobile and Vehicular Network Lab

Advantages  of  Using  a  Smartphone

Useful Components

Multi-­‐touch     Screen

Powerful  CPU

Useful  Sensors:

GPS

Accelerometer

High initial market penetration rate

Gyro

•  Lower  effect  cost  for  users  

•  2012  smartphone  market  share:  

•  Existing  Supporting  Infrastructure  

42% 44%

Good user experience

•  Know  about  the  user  behaviors   in  other  context  as  well  

•  Already  familiar  with  the   smartphone’s  HCI  

32

Camera

WiFi      Cellular   and  DSRC   (Qualcomm)

(33)

Mobile and Vehicular Network Lab

Classification  of    

Causes  of  Fatal  Accidents

•  Of  the  3,209  deaths  in  accidents  in  2010,  top  4   causes  of  accidents  are:  

•  Drive  Under  Influence  (drunk  driver)  –  17.82%  

(572)  

•  Did  not  yield  to  others  –  16.45%  (528)  

•  Lost  of  attention  to  the  road  –  15.39%  (494)  

•  Violation  of  traffic  signals  –  7.35%  (236)  

33

What  can  be  done  to  avoid  these  accidents?    

(and  save  over  1,000  lives  per  year!)

(34)

Submission

doc.: IEEE 802.11-13/0541r1

Safety Applications – V2V

Forward Collision Avoidance FCA Emergency Electronic Brake Lights EEBL

Blind Spot Warning BSW

Lane Change Assist LCA

Do Not Pass Warning DNPW

Intersection Collision Warning ICA

Wrong Way Driver Warning WWDW Cooperative Adaptive Cruise Control CACC

Examples Follow:

Slide 34 John Kenney, Toyota Info Technology Center

May 2013

(35)

Submission

doc.: IEEE 802.11-13/0541r1

V2V Safety Use Case

If driver of approaching car does not stop, or slow appropriately, warning issued within car.

Slide 35 John Kenney, Toyota Info Technology Center

May 2013

DSRC communication

Stopped

Car Approaching

Car

Forward Collision Warning (FCW)

(36)

Submission

doc.: IEEE 802.11-13/0541r1

V2V Safety Use Case

High deceleration by car approaching jam. Trailing car Informed via DSRC within 100 msec.

Slide 36 John Kenney, Toyota Info Technology Center

May 2013

Emergency Electronic Brake Lights (EEBL)

Traffic Jam

(37)

Submission

doc.: IEEE 802.11-13/0541r1

V2V Safety Use Case

Slide 37 John Kenney, Toyota Info Technology Center

May 2013

Normal driving –

advisory indicator of car in blind spot Driver receives warning

when showing intent to change lanes

Blind Spot Warning (BSW)

Note: Specific timing, format, or decision logic for advisories and warnings will likely vary for each car manufacturer

(38)

Submission

doc.: IEEE 802.11-13/0541r1

V2V Safety Use Case

When showing intent to move to oncoming lane, driver receives warning if not safe to pass.

Slide 38 John Kenney, Toyota Info Technology Center

May 2013

Do Not Pass Warning (DNPW)

Oncoming traffic

(39)

Submission

doc.: IEEE 802.11-13/0541r1

V2V Safety Use Case

If intersecting trajectories are indicated, driver is warned.

Slide 39 John Kenney, Toyota Info Technology Center

May 2013

Building: Leads to Non-Line Of Sight (NLOS) communication

Intersection Collision Warning (ICA)

(40)

Submission

doc.: IEEE 802.11-13/0541r1

Safety Applications – V2I

Applications enabled by SPaT:

Red Light Running RLR

Left Turn Assist LTA

Right Turn Assist RTA

Pedestrian Signal Assist PED-SIG

Applications enabled by Signal Request Message (bi-directional communication):

Emergency Vehicle Preempt PREEMPT

Transit Signal Priority TSP

Freight Signal Priority FSP

Rail Crossing RCA

Examples follow:

Slide 40 John Kenney, Toyota Info Technology Center

May 2013

(41)

Submission

doc.: IEEE 802.11-13/0541r1

Safety Use Cases: SPaT and MAP

Slide 41 John Kenney, Toyota Info Technology Center

May 2013

Messages sent from RSE:

•  Signal Phase and Timing (SPaT) - dynamic

•  MAP (intersection geometric description) - static RSE may also send GPS Correction Data

Application Types:

RLR LTA RTA TSP FSP

PED-SIG

SPaT can also enable non -safety applications like “Green Wave”

Freight Yard Vehicle Without DSRC

Transit Vehicle

(42)

Submission

doc.: IEEE 802.11-13/0541r1

Safety Use Case: Work Zone Warning

Slide 42

Grass Divider

up to 1100 ft range

Work Zone Warning Com. Zone

Work Zone

Traffic Cones

RSU

In-Vehicle Display and Annunciation

ZONE AHEAD WORK

May 2013

John Kenney, Toyota Info Technology Center

(43)

Submission

doc.: IEEE 802.11-13/0541r1

V2I Safety Use Case: Road Hazard Warning

Slide 43 John Kenney, Toyota Info Technology Center

May 2013

Median

Dynamic Message Sign and Multi-App RSU

Road Condition Warning Com. Zone

Road Sensor Station

Bridge

ICE

Up to 650 ft forward of the Hazard

90 m (300 ft) range

Variations include:

Road Condition (ice), Curve Speed

Low Bridge Roll-over

Roadway Weather (RWIS) In Vehicle Signage Accident Ahead Rock slide, etc.

(44)

Submission

doc.: IEEE 802.11-13/0541r1

V2I Safety Use Case: (PREEMPT)

(also used for Transit/Freight Priority)

Slide 44

Emergency Vehicle

~ ~

RSE

up to 1000 m (3281 ft)

~ ~

~ ~

Preempt Transaction

1. DSRC OBE-to-RSE: Vehicle Host Preemption Request 2. DSRC RSE-to-OBE: ACK

3. Emergency Vehicle Host Displays Preempt-ACK within vehicle

DSRC Transaction occurs on Ch. 184 at high power.

OBE

May 2013

John Kenney, Toyota Info Technology Center

(45)

Submission

doc.: IEEE 802.11-13/0541r1

V2I Safety Use Case: Standardized Tolls

Slide 45

Open Road Example

Capture Zone

RSE-Equipped Gantry

30 m (98 ft) May 2013

John Kenney, Toyota Info Technology Center

(46)

Submission

doc.: IEEE 802.11-13/0541r1

V2I Safety Use Case: RR Grade Crossing

May 2013

John Kenney, Toyota Info Technology Center Slide 46

Train 20-40 sec.

distant

Conventional

RR Grade Crossing Equipped with RSE RSE warning range

increased compared to conventional equipment Can also be used at non -signalized crossings Range up

to 1100 ft

RR Warning Sign

Train 20-40 sec.

distant

(47)

Mobile and Vehicular Network Lab

Red-­‐light  Running:  

Infrastructure-­‐based  Solution

47

A  LIDAR  or  a  camera  to  detect   Red-­‐Light  Runners

Broadcast  to  warn   near-­‐by  vehicles

(48)

Mobile and Vehicular Network Lab

Red-­‐light  Running:  

Smartphone-­‐based  Solution

48

Rider’s  smartphone    

detects  possible  red-­‐light  running

Broadcast  to  warn   near-­‐by  vehicles

(49)

Mobile and Vehicular Network Lab

MD-­‐SVM  Results

0 10 20 30 40 50 49

50 55 60 65 70 75 80 85 90 95 100

False positive rate (%)

True positive rate (%)

MD-SVM: 15-45m

va vaG vaGt vaGtr

LADAR-vatr

0 10 20 30 40 50

50 55 60 65 70 75 80 85 90 95 100

False positive rate (%)

True positive rate (%)

MD-SVM: 20-45m

va vaG vaGt vaGtr

LADAR-vatr

90%,90%  for  15-­‐45m

85%,80%  for  20-­‐45m

(50)

Mobile and Vehicular Network Lab

NLOS  BSM:  Motivation

50

Implement V2V communications in the scenario

How can we do?

People usually honk the horn, but some problems could occur.

(51)

Mobile and Vehicular Network Lab

51

Environments

       Location1                      Location2                    Location3  

(52)

Mobile and Vehicular Network Lab

52

Minimum  Beacon  Rate  to  reach   a  99%  Successful  Rate

V=45km/hr

Beacon size = 64 bytes

V=60km/hr

•  nLoS  links  through  the  corner  buildings  often  neglected  

•  Fairly  usable!  At  (30m,30m),  path  loss  ~  85  dB!  

•  At  45  km/hr,  5  beacons/s  can  save  99%  of  collisions!  

(53)

Mobile and Vehicular Network Lab

Challenge 1: Scalability 

•  A 100-m road segment can have:

–  More than 600 scooters –  More than 120 cars

•  Up to 240 km/h relative speed

•  Different routes for different vehicle

•  Communication requirements:

–  Very reliable link –  Decent end-to-end

throughput

–  Application-dependent delay

(54)

Mobile and Vehicular Network Lab

54

 “Pairwise  Point-­‐to-­‐Point  Links”    

for  Vehicle-­‐to-­‐Vehicle  and  Vehicle-­‐to-­‐

Infrastructure  

EE  Times:  Top  10  Automotive  Agendas  for  2014  &  Beyond   7.  Time  to  act  on  V2V,V2I  

(55)

Mobile and Vehicular Network Lab

Scalability:  Interference

Your  Car

RF  Communication   Coverage

VLC  Coverage

Utilizing  visible  light’s  property  to  do  

“Automatic  neighbor  filtering”:  

•  Zero  communication  overhead  

•  Zero  delay  

àAlways  Scalable!  

Line-­‐of-­‐Sight  only  propagation  channel  

       long  range  +  lower  interference  

   

(56)

Mobile and Vehicular Network Lab

56

Challenge  2:  who  is  speaking?

My  loca(on  is  (X3,  Y3)  and  my  

speed  is  98  mph,  and  I  am  braking.

My  loca(on  is  (X2,  Y2)  and   my  speed  is  101  mph.

My  loca(on  is  (X1,  Y1)  and   my  speed  is  106  mph.

GPS  Uncertainty  =  5  -­‐10  m

(57)

Mobile and Vehicular Network Lab

Change  the  world     (on  the  road)

•  What  we  will  talk  about  today:  

0.    Google  driver-­‐less  car  (autonomous  vehicle)   1.  Increase  highway  capacity  (efficient)  

2.  Avoid  scooter  accidents  (safe)  

3.  Business  perspective  (whether  it  will   happen)

57

(58)

Mobile and Vehicular Network Lab

Why  do  we  need     a  business  model?

•  You  have  this  cool  V2V  radio  that  talks  to   other  vehicle  in  your  car  

•  But  you  are  ALONE.    

•  What  would  happen?    

•  Nothing…  

 

58

(59)

Mobile and Vehicular Network Lab

Why  do  we  need     a  business  model?

•  300K-­‐500K  new  cars  annually  in  Taiwan  

•  6M  car  population  

•  10%  minimum  market  penetration  rate  is   required  for  most  V2V  applications  

•  Even  if  all  new  cars  start  to  equip  V2V,  it  takes   2  years  to  reach  10%.  

59

No  customer  wants  to  buy  something  that  has  to   wait  for  another  2  years  to  function  normally.  

         à  No  real  products.

(60)

Mobile and Vehicular Network Lab

Potential  Issues:  Cooperative  Systems

1.  Bootstrapping:  what  is  the  required  initial   market  penetration?  

–  If  no  one  is  using  it,  then  it  is  useless  

Ø  No  incentive  for  the  user  to  purchase  the  new  system  

–  Possible  solution:    

•  The  system  is  bundled  as  a  "side-­‐feature".  You  get  the   main  feature  you  want  (ex.  DriverCam),  but  also  get   this  "nice-­‐to-­‐have"  feature  additionally.  

60

(61)

Mobile and Vehicular Network Lab

2.  Control  point:    

– How  to  make  sure  only  paid  users  can  use  the   system/service?  

Ø   V2V:  no  obvious  methods  (need  close  systems)  

Ø   V2I:  the  gateway  (base  stations  &  RSUs)  can  control   who  can  go  through  

3.  Security:    

will  you  trust  your  neighboring  vehicles?  

61

Potential  Issues:  Cooperative  Systems

(62)

Mobile and Vehicular Network Lab

Possible  Business  Model

How  to  obtain  the  profit?  

1.  Bundled  as  part  of  the  vehicle    

–  New  feature,  thus  higher  price  

–  Does  the  user  want  to  pay  for  the  additional  cost?  

2.  Smartphone:  deployed  as  a  paid  app.  

–  Obtain  profit  when  the  user  purchases  the  app  

3.  Monthly  subscription  for  the  user:    

–  the  user  is  buying  a  service  

4.  Subsidized  by  the  government  to  mandate  a  new   vehicular  system  (usually  combined  with  1.)

62

(63)

Mobile and Vehicular Network Lab

Case  Study  1:  Car  Following

(64)

Mobile and Vehicular Network Lab

Case  Study  1:  Car  Following

•  Car  Following  (The  SARTRE  Project  )  

–  Leader  (human)  drives  for  revenue.  

–  Followers  (auto-­‐driving)  pay  for  enjoy  the  trip  without  human  driving.  

64

Leader  |  Dest.:  Tainan

Follower  |  Dest.:  Taichung

Leader  |  Dest.:  Tainan

Taichung  

EXIT Leave  Group  &  Pay  to  Leader

Follower  |  Dest.:  Tainan

Taichung   EXIT

(65)

Mobile and Vehicular Network Lab

Post-­‐Accident

•  Insurance  claim  

– Investigation  at  the  scene  (agents  and  polices  

•  road-­‐side  surveillances      

•  costly  and  time  consuming    

– Lawsuit    

– Bogus  insurance  claim  

•  £410m  of  motor  insurance  fraud  detected  in  UK,  2009    

Case  Study  2:  Networked  DriverCam  

(66)

Mobile and Vehicular Network Lab

How  about  an  networking  solution?

•  V2V  +  V2I  

– CSI  in    

vehicular     networks  

•  Business  model  

– Incentive  for  insurance  company  

•  A  total  package  for  customers  

•  Annual  renewal  of  insurance  policy  (steady  cash  flow?)  

Case  Study  2:  Networked  DriverCam  

(67)

Mobile and Vehicular Network Lab

•  GM  OnStar  

– V2I:  CDMA  cellular  network  

–  Stolen  Vehicle  Assistance,  Roadside  Assistance,  Remote  Door   Unlock,  Remote  Horn  and  Light  Flashing,  Red  Button  

Emergency  Services  and  OnStar  Remote  Vehicle  Diagnostics   –  Subscribe  Service:    

•  Safe  &  Sound:  $18.95/mth  ($24.95  in  Canada)  

67

Case  Study  3:  GM  OnStar

[1]  OnStar,  https://www.onstar.com/web/portal/landing   [2]  OnStar,  http://en.wikipedia.org/wiki/OnStar,  Wiki  

(68)

Mobile and Vehicular Network Lab

•  GM  OnStar  

– Car  Rental  Service

68

Case  Study  3:  GM  OnStar

[1]  Telematies  News,  http://telematicsnews.info/2011/10/06/us-­‐gm-­‐onstar-­‐and-­‐relayrides-­‐launch-­‐car-­‐sharing-­‐program/  

[2]  automotive.com,  http://blogs.automotive.com/gm-­‐to-­‐begin-­‐onstar-­‐carsharing-­‐anyone-­‐have-­‐an-­‐available-­‐corvette-­‐59543.html  

(69)

Mobile and Vehicular Network Lab

Conclusion

•  New  technology:  vehicular  networks    à    

New  opportunity:  cooperative  systems.  

•  Change  our  world  on  the  road  -­‐  higher  performance  

–  More  Efficient:  Greener,  faster,  more  capacity   –  Safer:  zero  injuries  &  fatalities  

–  Affordable:  each  vehicle  only  needs  to  know  a  few  things   –  New  applications:  remain  to  be  unleashed  

•  Good  research  &  business  opportunities!  

•  Shameless  Plug:    

 MVNL  welcomes  you.  

69

(70)

Mobile and Vehicular Network Lab

Thank  you!

Please  feel  free  to  contact  me  for  questions:  

Prof.  Michael  Tsai  (蔡欣穆)  

Mobile  and  Vehicular  Network  Lab   hsinmu@csie.ntu.edu.tw  

 

Dept.  of  Computer  Science  and  Information  Engineering   National  Taiwan  University

70

參考文獻

相關文件

間接問句:Do you know your favorite color can also tell people what kind of person you are.. 句中有兩個間接問句:第一個間接問句 your favorite color can also tell people

Do you agree with the proposed changes for the Compulsory Part of Information and Communication Technology curriculum.. Agree Disagree

Is end-to-end congestion control sufficient for fair and efficient network usage. If not, what should we do

SG is simple and effective, but sometimes not robust (e.g., selecting the learning rate may be difficult) Is it possible to consider other methods.. In this work, we investigate

• Visit the primary school before school starts, find out about the learning environment and children’s impression of the school and help children adapt to the new school after the

• Learn about wireless communications and networks!. • Why is it so different from wired communications

Such analysis enables valuable applications including social entity search en- gines and substitution recommendation systems. For a social entity search engine, existing work such

Text messaging (SMS) allows users to send and receive short text messages on a phone or other mobile device or computer Picture messaging allows users to send pictures and