• 沒有找到結果。

竹碳添加氫氧化鉀還原一氧化氮空氣污染物之研究

N/A
N/A
Protected

Academic year: 2021

Share "竹碳添加氫氧化鉀還原一氧化氮空氣污染物之研究"

Copied!
51
0
0

加載中.... (立即查看全文)

全文

(1)

ܴཥࣽמεᏢਠϣ஑ᚒࣴزीฝԋ݀ൔ֋

ीฝᜪձǺ…Һ୍ࠠीฝ…᏾ӝࠠीฝ

ɍ

ঁΓीฝ

ीฝጓဦǺNVTU.ϯ׷.7

୺Չය໔Ǻ104 ԃ 1Д 1 ВԿ 104 ԃ 9 Д 30В

ीฝЬ࡭ΓǺഋճம

ीฝୖᆶΓ঩Ǻ஭ሎϡ

ೀ౛БԄǺϦ໒ܭਠᆛ।

୺ՉൂՏǺϯᏢπำᆶ׷਑ࣽמس

ύ๮҇୯ 104 ԃ 9 Д 30 В

Ԯᅹబуణ਼ϯႇᗋচ΋਼ϯේޜ਻Ԧࢉނϐࣴز

The Study of NO Air Pollutant Reduction by KOH Contained

(2)
(3)
(4)

Abstract

A bamboo activated carbon is made from the waste bamboo chopsticks in this study. The bamboo chopsticks are carbonized in 400к at the beginning, then followed by activated in 750к at the atmosphere of CO2 to prepare the bamboo

activated carbon (BAC). Followed, the BAC is acid treated by 6N hydrogen chloride. After that, the BACs will be impregnated separately in KOH solutions of 0, 3, 6, 10 and 20wt% for one hour. Finally, after filtration, the BACs doping with KOH are dried in conditions of 30, 60 and 105к separately. The prepared BAC catalysts will be used for the NO conversion reaction.The function groups on the surfaces of the BAC catalysts are also measured by FT-IR. The surface properties of the BAC catalysts are also analyzed by SEM and BET. The elemental analysis of the BAC catalysts is analyzed by EDS. After all, the NO conversion characteristics of the BAC catalysts are tested in the conditions with 3%O2and without O2 at the temperature

range 30-180кto investigate the effects of doping KOH. The BAC catalysts are also tested through the thermo gravimetric analysis (TGA) to study the interrelations between the reaction temperature and thermal gravity.

The FT-IR tests show that the intensity of function groups is decreased in the surface of BAC catalysts which are doping with KOH. The BET tests of the BAC catalysts adding KOH indicate that the specific surface areas are also decreased significantly. Both of the above two effects revealing that there exist the competitions between the NO oxidation reaction by KOH and the NO reduction reaction by activated carbon. The NO conversion experiments in the atmosphere of 3% O2and the

temperature above 90к show that the NO conversion of BAC(30к, 6%KOH) is higher than the BAC without KOH. The NO conversion of BAC(30к, 6%KOH) reaches 80% in the atmosphere of 3%O2and 60к. But, under the atmosphere without

oxidation, all the experiments of the BAC catalysts with KOH indicate that the NO conversions are lower than that without KOH. Finally, the 36hrs life duration tests in 3%O2 and 180к show that the NO conversions of the BAC catalyst with KOH is

very close to that without KOH.

KeywordsΚBamboo carbon, acid treatment, KOH, low temperature NO conversion

(5)
(6)
(7)
(8)
(9)
(10)

΋

΋ǵ߻ق

1.1ᆣፕ ӧࣽמว৖ِೲޑ౜жޗ཮ǴΓॺޑғࢲВᅌߡճǴғࢲНྗΨᒿϐගଯǶ ՔᒿԶٰޑࢂπቷǵεኴǵؓᐒًኧໆຫٰຫӭǴ௨ܫεໆޑྟၰ਻Ϸቲ਻٬ள ᕉნᎁڙԡࢉǶӢԜӵՖफ़եޜ਻ԡࢉޑวғаϷ෧ϿჹᕉნޑઇᚯࢂҞ߻Шࣚ Ӛ୯ᜢݙޑ᝼ᚒǶ πቷ௨ܫޑྟၰ਻کؓᐒً௨ܫޑቲ਻ύх֖Αේ਼ϯނ(NOx)Ϸ౷਼ϯ ނ(SOx)Ǵ೭٤ϯӝނࢂ೷ԋለߘ(acid rain)کӀϯᏢྟᜦ(photochemical smog)ޑ Ьाٰྍ[ቅǴ1998]Ƕේ਼ϯނࢂ׎ԋૌ਼ޑ߻០ނ፦ϐ΋Ǵε਻ύේ਼ϯނа NOǵNO2ǵNO3ϷN2OࠠᄊӸӧǴ΋૓ቲ਻ύ܌ᒏޑේ਼ϯނ(NOX)ࢂࡰNOϷ

NO2ǴNOӧε਻ύ཮਼ϯԋNO2ǴԶNO2ڙ໚Ӏྣ৔ࡕǴΞ཮ϩှӣNOϷ਼চ

(11)

ϯᏢϸᔈ׎ԋ਼߄य़ϯӝނǶԜѦǴᅹ-਼߄य़୷Տޑ׎ԋό໻ࢂٰԾܭᆶ਼ ޑϸᔈǴҭё࿶җᆶ਼ϯ܄਻ᡏ(ૌ਼ǵේ਼ϯނǵΒ਼ϯᅹ...฻)܈਼ϯ܄ྋ న(ฮለǵၸ਼ϯణ...฻)ౢғǶᅹޑ਼߄य़ፄӝނϐ܄፦ϷኧໆЬाࢂڙځК ߄य़ᑈǵᗭಈಈ৩ǵԪϩ֖ໆǵྕࡋǵϷᅹϯำࡋ܌ቹៜ[මǴ2002]Ƕ

җܭࢲ܄ᅹ༹ሽϷᓬຫޑ่ᄬ੝܄Ǵ߈ԃٰаࢲ܄ᅹᇙբ᝻൞٠ҔӧNOᗋ চϸᔈሦୱڙډቶݱޑࣴزȘIllan-Gomez et al., 1996; Zhuet al., 2000]Ƕ੝ձࢂа ࢲ܄ᅹࣁᏼᡏਔǴ࿶ၸለೀ౛Ǵёаቚуځ߄य़ޑለ܄਼֖۔ૈ୷Ǵගϲ᏾ᡏ ޑ໽ϯࢲ܄Ƕ 1.2ЎЎ᝘ӣ៝ 1.2.1ࢲ܄ᅹᙁϟ ࢲ܄ᅹޑЬाԋϩࣁᅹ(C)ǴӕਔΨ֖ԖٰԾচ਑܈ࢂబуނޑϿໆ܈༾ໆ ϐคᐒނ፦Ǵࢲ܄ᅹ(Activated Carbon)ࣁӭϾ܄ᅹᡏޑӝᆀǶᇙ೷Бݤࣁஒ֖ᅹ ނ፦ᅹϯ(carbonization)Ǵӆ࿶ၸࢲϯ(activation)ԶளǶ ΥӸܭԾฅᕉნύϐ֖ᅹԋϩၨӭޑ୏ǵ෌ǵ᝜ނϐނ፦Ǵ࿶ၸ፾྽ೀ ౛ࡕ֡ૈԋࢲ܄ᅹǶ߈ԃٰբࣁࢲ܄ᅹচ਑ޑٰྍ׳ࣁӭኬϯǶҞ߻٬Ҕϐ চ਑ЬाԖǺ 1.୏෌ނБय़ǺٯӵЕ׷ǵዿෘǵྲྀηෘǵ୏ނମᓝ฻Ƕ 2.Γπӝԋচ਑Бय़ǺΓ೷ᠼᆢǵᆫЧ౎ᐋ✊ǵᐎጤ฻Ƕ 3.᝜ҡϷᐯ਑Бय़Ǻขࣅǵᛅߙǵݝྡǵҡݨᇃᚖූ෦฻Ƕ Ҟ߻୘཰ϯޑࢲ܄ᅹচ਑аЕ׷ǵྲྀηෘکྡࣁЬǴӧᒧ᏷চ਑ਔǴᓬ ӃԵໆޑྗ߾х֖Ԫҽ֖ໆǵሽ਱ǵᓯӸϐტڮаϷڗளϐᜤܰ[ጰ฻ΓǴ 1993]Ƕ 1.2.2ࢲ܄ᅹϐᇙ೷ ࢲ܄ᅹࢂϾሜᄬ೷ϷК߄य़ᑈၨεޑᅹન׷਑ǴӢԶቶݱᔈҔܭπ཰΢ ٮբ֎ߕ׷Ϸ᝻൞ၩᡏ٬ҔǴځٰྍӧԾฅᕉნύӸӧϐ୏෌ނϷ᝜ނǴѝा ڀଯ֖ᅹໆ೿ёࣁᇙ೷ࢲ܄ᅹޑচ਑ǶҞ߻୘཰ࢲ܄ᅹаྡǵЕ׷کྲྀηෘന ӭǴځύΞӢྡӧԾฅࣚޑ᝶ᙒໆᙦ൤ǴЪሽ਱ե༹ǴӢԜԖӭኧޑࢲ܄ᅹࢂҗ ྡ܌ᇙ೷ԶԋǴҗܭྡҁي֎ߕϷ߄य़ࢲ܄ό٫ǴӢԜሡаᅹϯ(carbonization) Ϸࢲϯ(activation)฻ၸำٰ㽲уځ֎ߕૈΚǶᅹϯᆶࢲϯޑၸำϩॊӵΠǺ 1.ᅹϯ ᅹϯǴᙁൂޑۓကࣁǺԖᐒϯӝނᙖҗ዗Ǵᙯඤᡂԋᅹ[Lewis, 1982]ǶΞᆀ ࣁ዗຋ှ(pyrolysis)ǶѬࢂࡰӧආ܄਻ᡏύǴҔଯྕஒଯϩηނ፦ύޑߚᅹচη (ణǵ਼ǵේǵ౷฻)Ǵаචวނ(gas)کขݨ(tar,liquid)׎ԄញрǶߚᅹচηញрࡕǴ

(12)
(13)

วғӧ༾ϾύǶᗨฅύϾᆶѮϾӧࢲ܄ᅹޑϾࢰ่ᄬύ܌՞ޑКٯၨϿǴՠ ༾ϾεӭϩթӧύϾᆶѮϾϐύǴӢԜ֎ߕނ፦Ѹ໪೸ၸύϾᆶѮϾωૈᘉ ණԿ༾ϾύǴӵკ1.1܌ҢǴ܌аύϾᆶѮϾӧ֎ߕำׇύҭתᄽΑ࣬྽ख़ा ޑفՅǶ კ 1.1 ࢲ܄ᅹϣ೽ᄬ೷კ[Rodriguez-Reinoso, 1998] 1.2.4 ࢲࢲ܄ᅹϐ۔ૈ୷ ࢲ܄ᅹҗᜪ՟ҡᏀ܈໶ቫᄬ೷ޑཱུ༾λ่඲܌ಔԋǴ٠֖ࡐӭ่඲҃ᆄޑ࿦ ᜔य़Ǵځ߄य़Ԗεໆаࢲ܄ణ܈਼֖୷ࣁЬޑ߄य़۔ૈ୷Ǵ೭٤߄य़۔ૈ୷ӭъ ჹ߄य़֎ߕϐ੝܄Ԗ܌ቹៜǶ[Hall, 1992]ว౜ᇙ೷ࢲ܄ᅹޑࢲϯၸำύ཮ౢғ۔ ૈ୷Ǵ܈ᙖҗ਼ޑϯᏢ֎ߕԶғԋǶ[Park, 2001]ᇡࣁӧᅹϯ܈ࢲϯྕࡋܭ800ʚ аΠਔǴ߄य़਼֖۔ૈ୷όᛙۓǴ཮׎ԋᡵ܄۔ૈ୷ǴԶࢲ܄ᅹϐለ܄߄य़܄፦ Ьाࣁለ܄۔ૈ୷܌Ꮴठ[Boehm, 1994]Ƕለ܄۔ૈ୷Ξаcarbonylǵcarboxylǵ phenolicǵhydroxylǵlactoneϷquinone฻۔ૈ୷ࣁЬǴ࣬ၨܭለ܄۔ૈ୷Ǵᡵ ܄۔ૈ୷ၨคܴዴೕۓǴ೯த่ᄬύԖᜪ՟chromeneϷpyroneޣջឦܭᡵ܄۔ ૈ୷[Tomon et al., 1996]Ƕӧࢌ੝ۓྕࡋΠǴ߄य़਼֖۔ૈ୷཮ញܫрCO2܈

COځύ΋ᅿ਻ᡏǴΨёૈ཮ӕ؁ញܫрCO2کCOǶ߄य़਼֖۔ૈ୷ޑғԋё

(14)

კ 1.2 ࢲ܄ᅹ߄य़ёૈޑ਼֖ለ܄۔ૈ୷[Boehm, 1994]

(15)

1.2.5ࢲࢲ܄ᅹ᝻൞ନ NO ϐϸᔈ ٬Ҕࢲ܄ᅹ᝻൞ޑNO ᗋচϸᔈΞёϩࣁబу NH3բࣁᗋচᏊᆶคబуNH3 ٿᅿǴځύబуΑ NH3բࣁᗋচᏊޑࢲ܄ᅹ᝻൞ନ NO ϸᔈǴځЬाϸᔈБำ Ԅᆶ໺಍ޑ SCR ݤ࣬ӕǴคబу NH3ޑࢲ܄ᅹ᝻൞ନ NO מೌҗܭࢲ܄ᅹёӕ ਔתᄽ᝻൞ϷᗋচᏊޑفՅǴځϸᔈᆶ SCR ϸᔈԖᡉ๱ޑόӕǶ คబу NH3բࣁᗋচᏊޑࢲ܄ᅹନ NO מೌǴёᗉխ਽ᓯӸޑӼӄ܄аϷ ਽ຽණܭቲ਻ύ೷ԋΒԛԦࢉ฻ୢᚒǴӢԜڙډᏢޣ஑ৎॺޑख़ຎǴӧԜᜪϸᔈ ύǴࢲ܄ᅹΨתᄽᗋচᏊޑفՅ٬ NO ೏ᗋচǴԶځҁي߾೏਼ϯԶញр CO2

Ϸ CO ฻਻ᡏǶਥᏵ[Khristova et al., 1998]Ϸ[Mehandjiev et al., 1996]ޑࣴزǴӧ ค NH3ᕉნΠନ NO ޑϸᔈё߄ҢࣁǺ ads s s g C C NO NO( )  ( ) o ( )[ ] (1) ] [ ] [ 2( ) ( ) ) ( NO N C O Cs ads o g  s (2) Զӧ༾਼ޑ௃ݩΠǴO2཮ᆶࢲ܄ᅹϸᔈԶញр΋਼ϯᅹ(CO)ǴԶ CO ڀ ԖᗋচᏊޑਏ݀ёߦ຾ NO ޑᗋচǺ

CO

O

C

2

2



2

o

(3) 2 2

N

CO

NO

CO



o



(4) ΢ॊޑϸᔈᗺрΑ NO ೏ᗋচԶ׎ԋЬाౢނࣁ N2Ϸ CO2ޑЬाϸᔈǶ ௖૸ NO ޑᗋচϸᔈ٠ୖԵ Illan-Gomez ฻Γ[1996]ޑࣴزёޕǴӧค਼Ϸค ਽ޑᕉნΠ NO ޑᗋচϸᔈᐒᄬࢂ࿶ၸ NO ֎ߕ/ᗋচϸᔈǵ਼໺ሀǵаϷౢ ނಥߕϸᔈΟঁ؁ᡯԶֹԋޑǺ NO ֎ߕ/ᗋচϸᔈǺ 2 f

2NO

2C

O

N

2C



o





(5) C(O) O C l (ё଍) (6) * f 2 C CO 2C(O)o  (7) 2 * f 2NO 2C O N 2C  o   (8) ΢ॊፏԄύǴCf ж߄Ծҗᅹࢲ܄୷Ǵ(5)Ԅёှញࢲ܄ᅹ᝻൞ӧեྕਔޑ NO ᗋচϸᔈǴஒ Cf਼ϯࣁ C-OǶ྽ྕࡋ೴ᅌϲଯਔǴ่ӝܭ C-O ύޑ਼ё ӧ ࢲ ܄ ᅹ ᝻ ൞ ߄ य़ ຾ Չ ౽ ୏ Զ ׎ ԋ ߄ य़ ᅹ ਼ ύ ໔ ނ C(O)(Carbon-oxygen surface intermediate)Ǵёҗ(6)Ԅ߄ҢǶӧౢނಥߕၸำύǴC(O)ё຾Չϩှϸ ᔈ(7)ԄԶ׎ԋ CO2Ϸཥᅹࢲ܄୷ Cf*(Nascent carbon active site)Ǵཥᅹࢲ܄୷

ӆᆶ NO ϸᔈ((8)Ԅ)ஒځᗋচࣁ N2ЪΞ׎ԋ C-OǴӵԜё࡭ុޑஒ NO ᗋচ ౢނಥߕϸᔈǺ

(16)

ࣁ N2٠ញܫр CO2Ƕॶளݙཀޑࢂ΢ॊ C-O ฻߄य़਼ϯނ٠ό߳ज़ܭԾϸᔈ

ύౢғǴҭёҗࢲ܄ᅹᇙ೷ၸำ܈ࢂ᝻൞Ⴃ਼ϯၸำԶளډǶ

(17)
(18)

Ο

ΟǵࣴزБݤ

ҁࣴزࣁӧ 400ʚϐᕉნΠஒϪപԋऊ 5 ϦϩߏࡋޑԮ࿮ࢤᅹϯǴӆճҔΒ ਼ϯᅹӧࢲϯྕࡋ 750ʚΠࢲϯᇙԋԮᅹࢲ܄ᅹǴฅࡕ٬Ҕ 6N ᐚࡋϐᡶለНྋ న຾Չለೀ౛ගଯځК߄य़ᑈǴനࡕӆ࿶ၸόӕख़ໆК(3%ǵ6%ǵ10%ǵ20%) ϐణ਼ϯႇНྋనೀ౛ࡕǴ٠ӧόӕྕࡋ(30ʚǵ60ʚǵ105ʚ)ΠଳᔿǶ௖૸ ځჹ NO ѐନϸᔈϐਏ݀Ǵϩձӧค਼Ϸ 3%਼ޑϸᔈచҹΠѐନ΋਼ϯේޜ਻ ԦࢉނǶӧჴᡍၸำύǴନΑҔډᇙഢ᝻൞Ϸෳ၂᝻൞Ҕޑ਻ᡏѦǴќᗋ௦Ҕ᝻ ൞ϸᔈෳ၂း࿼ǵේ਼ϯނϩ݋ሺǵ዗ख़ϩ݋ሺаϷК߄य़ᑈෳۓሺ฻೛ഢٰ຾ Չ᝻൞܄ૈޑෳ၂ᆶໆෳǶаΠ൩ҁჴᡍ܌٬Ҕϐ਻ᡏǵሺᏔ೛ഢǵԮᅹ᝻൞ϐ ᇙഢБݤǵ᝻൞܄ૈෳ၂БݤϷሺᏔϩ݋฻ϩॊӵΠǺ 3.1 ჴᡍ೛ഢ 3.1.1 ᛰࠔ ҁࣴز܌٬ҔޑᛰࠔନԮᅹࣁԾᇙϐѦځᎩࣣࣁ၂ᛰભᛰࠔǴϩձ௶ॊӵ ΠǺ

1. ԾᇙԮᅹ(Bamboo Activated carbon)Ǵಈ৩:0.15~0.42mm

2. ᡶለ(Hydrochloric acid)Ǵᐚࡋ 12N(EP ભ)Ǵ৞Φᛰࠔ

(19)

1. ଯྕу዗᝗Ǻႝηу዗Ԅᆅރ᝗Ǵߏ 28cmǴϣ৩ 3cmǶ 2. ύޜҡमϸᔈᆅǺߏ 45cmǴϣ৩ 4mmǴҔа೛࿼᝻൞׉Ƕ 3. ਻ᡏ፦ໆࢬໆ௓ڋᏔǺKD4000 / 4CH ࠠǴҔа௓ڋ਻ᡏࢬໆǶ 4. ਻ᡏ፦ໆࢬໆीǺ3 ЍǶ 5. ዗ଽྕࡋᡉҢीǺ዗ଽࣁ K typeǴߏ 40cmǴѦ৩ 2mmǴҔаໆෳϸᔈ ᆅϣϐჴሞϸᔈྕࡋǶ

(20)

კ 3.2 ਻ᡏ፦ໆࢬໆ௓ڋᏔ

(21)

კ 3.4 ਻ᡏ፦ໆࢬໆी

(22)
(23)

3.2.1.3ᐨᐨѨ౗ीᆉ

ᐨѨ౗(Burn off rate)=ȴ(WiɡWf) / Wiȵ×100%

WiǺinitial bamboo weight ߃ۈނ਑ϐ੗ଳख़

WfǺfinal carbon weight ᐨᇙԋࠔϐ੗ଳख़

3.2.1.4 Ԯᅹለೀ౛ ࿶ၸࣴᑃᑔϩϐಈރԮᅹ(0.15~0.42mm)ሡа 105ʚϐ੗ጃ੗ଳ 1 λਔǴ੗ଳ ࡕஒځа፦ໆК 1:5 Кٯ੆Ε 6N ᐚࡋϐᡶለНྋనύ٠аᅶҡᠳ܏ 24 λਔǴ ӆ຾Չᠳ܏Нࢱ(ࢱԿᘠనεܭ pH 5)Ǵௗ๱ஒНࢱࡕಈރԮᅹа 105ʚ੗ଳǴ੗ ଳࡕीᆉځለೀ౛ཞѨໆ(ـკ 3.7)Ƕ࿶ለೀ౛ࡕϐԮᅹа BAC(6N HCl)ᆀϐǶ კ 3.7 Ԯᅹለೀ౛ϐࢬำკ 3.2.1.5 ለೀ౛ϐԮᅹబуణ਼ϯႇ ࿶ၸለೀ౛ࡕޑԮᅹࢲ܄ᅹӃа 105ʚϐ੗ጃ੗ଳ 1 λਔǴ੗ଳࡕ੆Εόӕ ख़ໆК(3%ǵ6%ǵ10%ǵ20%)ޑణ਼ϯႇНྋనύ٠аᅶҡᠳ܏ 1 λਔǴၸᘠ ࡕϩձӧόӕྕࡋ(30ʚǵ60ʚǵ105ʚ)Π੗ଳǴ੗ଳࡕीᆉځख़ໆቚуໆ(ـკ 3.8)Ƕ࿶ 3%KOH Нྋనೀ౛٠ӧ 30ʚϐΠ੗ଳϐԮᅹа BAC(30ʚ 3% KOH)Ǵ ܭᜪ௢Ƕ

Ԯᅹಈ੗ଳ 1 λਔ 105к

፦ໆК 1:5 Кٯ੆Ε 6N ᡶለНྋనύǴᠳ܏ 24 λਔ

(24)

კ 3.8 ለೀ౛Ԯᅹబуణ਼ϯႇϐࢬำკ

3.2.2 ዗዗ख़ϩ݋ሺ(TGA)

(25)

3.2.3 ഡഡҥယᙯඤआѦጕӀ᛼ሺ(FT-IR)

(26)

კ 3.11 JSM-6700 ࠠ௟ඔԄႝηᡉ༾᜔ 3.2.5 КК߄य़ᑈϩ݋ሺ(BET) BET Ͼሜϩ݋ሺ(SA 3100)ࣁኬࠔӧ 77K ޑྕࡋΠǴ٬Ҕ N2຾Չ฻ྕ֎ಥ ߕǴߡёளޕځϾሜ੝܄Ƕෳໆ߻ஒኬࠔܫΕ 130ʚ੗ጃύଳᔿԿ႖ВǴӆஒኬ ࠔ࿼Ε U ࠠኬࠔᆅ٠ӼးܭሺᏔ΢ǴӆճҔу዗хஒኬࠔᆅу዗Կ 210ʚ٠ܜ੿ ޜ٬ᆅύᓸΚեܭ 10-4 torrǴᙖԜନѐԮᅹύූᎩНϩϷචวނ፦Ǵӆஒኬࠔᆅ ࿼ܭనᄊේఏύǴ٬ځᆢ࡭ӧ 77K եྕΠǴ೯Ε N2ࡕ຾ՉෳໆǶෳໆֹԋࡕё

ளډࢲ܄ᅹϐ BET К߄य़ᑈ(SP)Ǵҁࣴز܌٬ҔޑሺᏔࢂऍ୯ Beckman Coulter

Ϧљ܌ᇙ೷ޑ SA 3100 К߄य़ᑈϷϾሜϩ݋ሺǶ(კ 3.12)

(27)

3.2.6 ᝻᝻൞܄ૈෳ၂ ҁࣴز௦Ҕڰۓ׉Ԅ᝻൞ϸᔈෳ၂း࿼ٰ຾Չ᝻൞ନ NO ܄ૈෳ၂Ǵځϸᔈ ෳ၂း࿼Ϸෳ၂؁ᡯϩॊӵΠ: 3.2.6.1 ϸᔈෳ၂း࿼ ஒଞჹለೀ౛ԮᅹϷለೀ౛ࡕబуణ਼ϯႇϐԮᅹӧค਼Ϸ 3%਼చҹΠ ຾Չ NO ᗋচϸᔈ܄ૈෳ၂Ǵ௦Ҕڰۓ׉Ԅ᝻൞ϸᔈෳ၂း࿼ໆෳ᝻൞܄ૈǴϸ ᔈ٬Ҕޑ਻ᡏ 2000ppm NO in Heǵ8% O2in HeϷ He ࣣҗଯᓸ਻ᡏᒳ౟܌ගٮǴ

(28)
(29)
(30)
(31)
(32)
(33)

(a)6N HCl(BAC) (b) 30к 3% KOH(BAC)

(c) 30к 6% KOH(BAC) (d) 60к 6% KOH(BAC)

(e) 105к 6% KOH(BAC) (f) 30к 20% KOH(BAC)

(34)

(a)6N HCl(BAC) (b) 30к 3% KOH(BAC)

(c) 30к 6% KOH(BAC) (d) 60к 6% KOH(BAC)

(e) 105к 6% KOH(BAC) (f) 30к 20% KOH(BAC)

(35)

(a)6N HCl(BAC) (b) 30к 3% KOH(BAC)

(c) 30к 6% KOH(BAC) (d) 60к 6% KOH(BAC)

(e) 105к 6% KOH(BAC) (f) 30к 20% KOH(BAC)

(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)

Ϥ

ϤǵୖԵЎ᝘

1. Aarna, I. and SuXEHUJ(0³$UHYLHZRIWKHNLQHWLFVRIWKHQLWULFR[LGH-carbon UHDFWLRQ´)XHO9ROS-491, 1997.

2. $XHU ( )UHXQG $ 3LHWVFK - DQG 7DFNH 7 ³&DUERQ DV VXSSRUWV IRU LQGXVWULDOSUHFLRXVPHWDOFDWDO\VW´$SSOLHG&DWDO\VLV$ǺGeneral, 173, p.259, 1998.

3. %DQVDO 5& 'RQQHW -% DQG 6WRHFNOL +) ³$FWLYH &DUERQ´ 0DUFHO Dekker, New York, 1988.

4. Boehm, H. P.³Some aspects of the surface chemistry of carbon blacks and other carbons´, Carbon, 32, p.759, 1994.

5. Hall, C. R. and Holmes, R. J.³The preparation and properties of some activated carbons modified by treatment with phosgene or chlorine, Carbon´, vol.30, p.173,1992.

6. Illan-Gomez, M.J., Linares-Solano, A., Radovic, L.R. and Salinas-Martinez, C.  ³NO reduction by activated carbons. 7.some mechanistic aspects of XQFDWDO\]HGDQGFDWDO\]HGUHGXFWLRQ´(QHUJ\DQG)XHOVS 7. .KULVWRYD 0 DQG 0HKDQGMLHY ' ³&RQYHUVLRQ RI 12 RQ 1L-impregnated

DFWLYH FDUERQ FDWDO\VW LQ WKH SUHVHQFH RI R[\JHQ´ &DUERQ    S 1998.

8. /HZLV,&³&KHPLVWU\RI&DUERQL]DWLRQ´&DUERQ20, p.519, 1982.

9. 0HKDQGMLHY ' .ULVWRYD 0 DQG %HN\DURYD ( ³&RQYHUVLRQ RI 12 RQ Co-LPSUHJQDWHGDFWLYHFDUERQFDWDO\VWV´&DUERQ  S-762, 1996. 10. Park, S. J. and Kim, K. D. ³Influence of activation temperature on adsorption

characteristics of activated carbon fiber composites´, Carbon, 39, p.1741-1746, 2001.

11. Pasel, J., Kabner, P., Montanari, B., Gazzano, M., Vaccari, A., Makowski, W., /RMHZVNL7']LHPEDM5DQG3DSS+³7UDQVLWLRQPHWDOR[LGHVVXSSRUWHG on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3´$SSOLHG&DWDO\VLV%ǺEnvironmental, 18,

p.199, 1998.

12. Rodriguez-Reinoso ) ³7KH 5ROH RI FDUERQ PDWHULDOV LQ KHWHURJHQHRXV FDWDO\VLV´&DUERQ  S9, 1998.

13. Rodríguez-Reinoso, F. and Molina-Sabio, M. ³Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview´Carbon, Vol. 30, No. 7, p.1111-1118, 1992.

(48)

state of the art´&DUERQ8, p.1, 1990.

15. 7RPRQ+DQG2ND]DNL0³,QIOXHQFHRI$FLGLF6XUIDFH2[LGHVRI$FWLYDWHG &DUERQRQ*DV$GVRUSWLRQ&KDUDFWHULVWLF´&DUERQ  S

16. =KX=/LX=/LX61LX++X7/LX7DQG;LH<³12UHGXFWLRQ with NH3 over an activzted carbon-supported copper oxide catalysts at low

WHPSHUDWXUH´$SSOLHG&DWDO\VLV%ǺEnvironmental, 26, p.25, 2000.

17. Zhang Haojie, Yao Wei, Lin Yang, Zhou Jie, He Dannong, ³0RGLILHG PRQROLWKLFDFWLYDWHGFDUERQIRUSXULI\LQJQLWURJHQR[LGH´&KLQHVH-RXPDl of Environmental Engineering, vol.6, No.10, 2012.

(49)
(50)
(51)

參考文獻

相關文件

利用 determinant 我 們可以判斷一個 square matrix 是否為 invertible, 也可幫助我們找到一個 invertible matrix 的 inverse, 甚至將聯立方成組的解寫下.

Then, we tested the influence of θ for the rate of convergence of Algorithm 4.1, by using this algorithm with α = 15 and four different θ to solve a test ex- ample generated as

Numerical results are reported for some convex second-order cone programs (SOCPs) by solving the unconstrained minimization reformulation of the KKT optimality conditions,

Particularly, combining the numerical results of the two papers, we may obtain such a conclusion that the merit function method based on ϕ p has a better a global convergence and

Then, it is easy to see that there are 9 problems for which the iterative numbers of the algorithm using ψ α,θ,p in the case of θ = 1 and p = 3 are less than the one of the

By exploiting the Cartesian P -properties for a nonlinear transformation, we show that the class of regularized merit functions provides a global error bound for the solution of

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =&gt;

incapable to extract any quantities from QCD, nor to tackle the most interesting physics, namely, the spontaneously chiral symmetry breaking and the color confinement.. 