• 沒有找到結果。

橋本幸士

N/A
N/A
Protected

Academic year: 2022

Share "橋本幸士"

Copied!
30
0
0

加載中.... (立即查看全文)

全文

(1)

橋本幸士    

大阪大学素粒子論研究室   H726室  

 

理化学研究所  

橋本数理物理学研究室

(2)

[Oka, Aoki, PRL 95 (2005) 137601]

Supersymmetric  QCD 1d  Mo8  insulator  

[Oka, KH 1307.7423]

Condensed  ma8er

“QCD-­‐ma8er”

(3)

What  resides  inside  neutron  stars?

Supernova  remnant  RCW103

(4)

[D.Page]

[Fukushima, Hatsuda 1005.4814]

``QCD  ma4er”  :  fron8er  in  quark  physics

Phase  diagram  of  QCD

L = 1

2E2 1 2

!

0

ds s3

"

eEs cot(eEs)− 1 + 1

3(eEs)2

#

Im L =

$ n=1

e2E2 3

1

n2 exp

"

nπm2 eE

#

L = TD72R2

!

dr r3

%

1 − (2πα"E)2 R4

((2πα"m)2 + r2)2 z = R2/r

dz = −R2dr/r2

dzz−5 = (r5/R10)(−R2)dr/r2 = −r3dr/R8 critical electric field

Ecr = 2πα"m2 R2 =

2πm2

λ

Im L = Nc

25πe2E2

&

1 + 25/2 m2

λeE log m2

λeE + higher '

Im L = 1

24πe2E2

&

1 + 6 π

m2

eE log m2

eE + higher '

LQCD = 1

4Fµνa Faµν + ¯ψi(iγµDµ − mi) ψi

1

[藤森研講義録]

(5)

Mee8ng  point  for  …  observa8on  and  theory

EquaJon  of  state   for  nuclear  ma8er  

[Hebeler  et.al  (2010  PRL)]  

Theory  

(QCD)

Obs.

(6)

Superstringy  mathemaJcs  resolves     mysteries  in  strongly  correlated  systems  

1. Is superstring useful?

2. Duality connecting theories 3. Challenge to neutron stars

Road  map 7  pages

7  pages 5  pages

1

2

3

(7)

Superstring  gets  useful  in  these  7  years

1997

2013 My  publicaJon With  units  

Without  units   (hep-­‐th)

hep-­‐ph astro-­‐ph

nucl-­‐th hep-­‐lat

cond-­‐mat

1

-1

(8)

Quarks  and  gluons  

Nucleons  and  hadrons  

Atomic  nuclei,  neutron  stars   Nuclear  physics  

LaZce  QCD   Superstring                Isola8on  between  par8cle  and  nuclear  physics  

1

-2

(9)

QCD  is  strongly  coupled,  hard  to  calculate  

L = 1

2E2 − 1 8π2

!

0

ds s3

"

eEs cot(eEs) − 1 + 1

3(eEs)2

#

Im L =

$ n=1

e2E23

1

n2 exp

"

−nπm2 eE

#

L = TD72R2

!

dr r3

%

1 − (2πα"E)2 R4

((2πα"m)2 + r2)2 z = R2/r

dz = −R2dr/r2

dzz−5 = (r5/R10)(−R2)dr/r2 = −r3dr/R8 critical electric field

Ecr = 2πα"m2

R2 =

√2πm2

√λ

Im L = Nc

25πe2E2

&

1 + 25/2 m2

√λeE log m2

√λeE + higher '

Im L = 1

24πe2E2

&

1 + 6 π

m2

eE log m2

eE + higher '

LQCD = −1

4Fµνa Faµν + ¯ψi (iγµDµ − mi) ψi

1

QCD  acJon  for  quarks  and  gluons:  simple  but  highly  nonlinear j = 0

j = (2πα!E)3/2/R

δE = TD7π2(2πα!E)2R4

!

" 1 0

dy y3

#1 − y2

$

"

0

dy y3

%

1 − y2 1 − y3

&'

y ≡ 2πα!Ez2/R2

= c

2 NcE2

(c ≈ 0.856)

Γ ∼ exp

!

√2π2m2

√λeE '

"

−∞

dx e−mx2 =

( π m

"

−∞

dx e−mx2−gx4 = ?

"

−∞

dx e−mx2−gx4 =

"

−∞

dx e−mx2 )

1 − gx4 + 1

2g2x8 + · · ·

*

=

( π m

)

1 − 3

4m2g + 105

32m4 g2 + · · ·

*

3

Strong  nonlinearity  (strong  coupling),  perturbaJon  impossible j = 0

j = (2πα!E)3/2/R

δE = TD7π2(2πα!E)2R4

!

" 1 0

dy y3

#1 − y2

$

"

0

dy y3

%1 − y2 1 − y3

&'

y ≡ 2πα!Ez2/R2

= c

2 NcE2

(c ≈ 0.856)

Γ ∼ exp

!

√2π2m2

√λeE '

"

−∞

dx e−mx2 =

( π m

"

−∞

dx e−mx2−gx4 = ?

"

−∞

dx e−mx2−gx4 =

"

−∞

dx e−mx2 )

1−gx4+ g2x8

2 + · · ·

*

=

( π m

)

1− 3g

4m2 +105g2

32m4 +· · ·

*

3 Linear

Nonlinear

j = 0

j = (2πα!E)3/2/R

δE = TD7π2(2πα!E)2R4

!

" 1 0

dy y3

#1 − y2

$

"

0

dy y3

%

1 − y2 1 − y3

&'

y ≡ 2πα!Ez2/R2

= c

2NcE2

(c ≈ 0.856)

Γ ∼ exp

!

2m2

λeE '

"

−∞

dx e−mx2 =

( π m

"

−∞

dx e−mx2−gx4 = ?

"

−∞

dx e−mx2−gx4 =

"

−∞

dx e−mx2 )

1−gx4+g2x8

2 + · · ·

*

=

( π m

)

1 3g

4m2 +105g2

32m4 +· · ·

*

3 j = 0

j = (2πα!E)3/2/R

δE = TD7π2(2πα!E)2R4

!

" 1 0

dy y3

#1 − y2

$

"

0

dy y3

%

1 − y2 1 − y3

&'

y ≡ 2πα!Ez2/R2

= c

2NcE2

(c ≈ 0.856)

Γ ∼ exp

!

2m2

λeE '

"

−∞

dx e−mx2 =

( π m

"

−∞

dx e−mx2−gx4 = ?

"

−∞

dx e−mx2−gx4 =

"

−∞

dx e−mx2 )

1−gx4+g2x8

2 + · · ·

*

=

( π m

)

1 3g

4m2 +105g2

32m4 +· · ·

*

3

0.5 1.0 1.5 2.0

0.5 1.0

1.5 2.0 1.0

1.5 2.0 2.5 3.0

Numerical  calculaJon?

+   +   +  …  

PerturbaJon

1

-3

(10)

QCD Hypothetical higher dim. gravity Graviton excitation

U(Nf) gauge theory Soliton

Glueball Meson Baryon

Deconfinement Finite temp

Quark density Plasma

Black hole

Hawking temp

Electric field in U(Nf)

Event horizon formation

Useful superstring as a math tool

Solve equivalent system via duality

Problems : Strong coupling, many body, solitons, …

Note: no need for theories to be really stringy.

Exciton Insulator

Conduction Phonon

electrons Heat bath

Impurity

Thermalize

1

-4

(11)

[Brower,Mathur,Tan (03)]

LaZce  

[Morningstar,Peardon  (99)]  

Superstring  

Superstring: better than simulations?

1

-5

(12)

Superstring   Experiment  

LaZce  

[Sakai,Sugimoto,KH  (0806.3122)]  

(0.74  fm)2   0  

0.54  fm   2.2   –  1.3  

0.73   7.5   5.8   4.4   2.3   0.20   –1.9  

(0.875  fm)2   –  0.116  fm2  

0.674  fm   2.79   –1.91  

1.27   13.2   4.2  –  6.5   3.7  –  7.5  

–   –   –    

4.99   2.49   0.06   –2.45   Radii of proton/neutron

Ex) Proton radius from superstring

1

-6

(13)

10 15 20 25 30

-0.004 -0.002 0.002 0.004 0.006 0.008 0.010

V (r)

r

(Inter-­‐nucleon  distance)  

3

S

1

[Sakai,Sugimoto,KH  (0901.4449)]  

[Aoki,Ishii,Hatsuda  (‘07)]  

LaZce  QCD   simulaJons  :   Experiments:  

[Stoks,Klomp,Terheggen,deSwart  (‘94)]  

Superstring:   Nuclear forces

Ex) Nuclear force from superstring

1

-7

(14)

Superstringy  mathemaJcs  resolves     mysteries  in  strongly  correlated  systems  

1. Is superstring useful?

2. Duality connecting theories 3. Challenge to neutron stars

Road  map 7  pages

7  pages 5  pages

1

2

3

(15)

Duality

theory  

A Theory  

= B

Strongly  coupled  (correlated) Too  nonlinear  to  solve

Too  many  DoF

Weakly  coupled,   solvable

2

-1

(16)

Holographic  equivalence

Describe  mulJ  vorJces.

A)  Field  theory  of  order  parameter

S = dt

k

( ˙X(k)i (t))2 +

k1=k2

V (|X(k1)(t) X(k2)(t)|)

S = d3x | µ (x, y, t)|2 V (| |) B)  ParJcle-­‐like  vorJces

For  full  equivalence?

Topological  number  fixed?  

Near-­‐vorJces?  

VorJces  on  top  of  each  other?  

Low  energy  excitaJons  only?  

Explicit  examples:  

 ADHM  construcJon  of  instantons    Nahm  construcJon  of  monopoles  

2

-2

(17)

           Stringy  duality:  Gauge/gravity  duality

D-­‐brane  =  vorJces  in  superstring  theory

・  Characterized  by  mass  and  charges

・  Gauge  theories  on  the  D-­‐branes Gauge/Gravity  duality:  

A)  Gauge  theory Strongly  coupled,  large  N  

B)  Gravity Weakly  coupled,  curved  higher  dimensional  space   [Maldacena  ‘98]  

S = 1

16⇡GN

Z

d5x p

g (R + 2⇤) + · · ·

S = 1

2g2 Z

d4x tr Fµ⌫Fµ⌫ + · · ·

2

-3

(18)

Quantizing strings defined in 10D spacetime

Open string Massless gauge field Closed string Massless graviton

D-branes = Object on which open strings can end

Open string theory on the Dp-brane is : SU(Nc) gauge theory in p+1 dimensions

Nc open strings

Nc parallel Dp-branes

2

D-­‐brane  giving  the  duality

2

-4

(19)

Deform

Quantizing strings defined in 10D spacetime

Open string Massless gauge field Closed string Massless graviton

D-branes = Object on which open strings can end D-­‐brane  giving  the  duality

2

-4

(20)

= Source of closed strings

= Source of gravity

= Extended blackhole “blackbrane” in 10D

Quantizing strings defined in 10D spacetime

Open string Massless gauge field Closed string Massless graviton

D-branes = Object on which open strings can end D-­‐brane  giving  the  duality

2

-4

(21)

Black brane Nc D-branes

Propagation of SU(Nc) gauge theory

composite states

Propagation of graviton in near-horizon geometry

of black p-brane (Glueball)

Gluon

Large N

c

Large λ

Deriving  the  Gauge/gravity  duality

2

-5

(22)

Superstringy  mathemaJcs  resolves     mysteries  in  strongly  correlated  systems  

1. Is superstring useful?

2. Duality connecting theories 3. Challenge to neutron stars

Road  map 7  pages

7  pages 5  pages

1

2

3

(23)

[D.Page]

[Fukushima, Hatsuda 1005.4814]

What  resides  inside  the  neutron  stars?

Phase  diagram  of  QCD

L = 1

2E2 1 2

!

0

ds s3

"

eEs cot(eEs)− 1 + 1

3(eEs)2

#

Im L =

$ n=1

e2E2 3

1

n2 exp

"

nπm2 eE

#

L = TD72R2

!

dr r3

%

1 − (2πα"E)2 R4

((2πα"m)2 + r2)2 z = R2/r

dz = −R2dr/r2

dzz−5 = (r5/R10)(−R2)dr/r2 = −r3dr/R8 critical electric field

Ecr = 2πα"m2 R2 =

2πm2

λ

Im L = Nc

25πe2E2

&

1 + 25/2 m2

λeE log m2

λeE + higher '

Im L = 1

24πe2E2

&

1 + 6 π

m2

eE log m2

eE + higher '

LQCD = 1

4Fµνa Faµν + ¯ψi(iγµDµ − mi) ψi

1

3

-1

(24)

From  hypothe8cal  QCD  to  real  QCD

Gauge  theory  with  4  supersymmetries  (N=4  Super  Yang-­‐Mills)

Supersymmetric  gauge  theory  +  quarks    (N=2  Super  QCD)

Non-­‐supersymmetric  SU(N)  gauge  theory  +  quarks  (Large  N    QCD)

Non-­‐supersymmetric  SU(3)  gauge  theory  +  quarks  (QCD) (1)

(2)

(3)

(4)

3

-2

(25)

Gauge  theory  with  4  supersymmetries  (N=4  Super  Yang-­‐Mills)

The  road  to  real  QCD:    (1)

(1)

Gluon  sector:    gluons  +  4  gluinos  +  6  scalars Quark  sector:  Not  allowed

Temp

Baryon  chemical  potenJal Gluon  plasma  

Black hole in

higher dimensions

Closed string

3

-3

(26)

(2)

Gluon  sector:    gluons  +  2  gluinos  +  2  scalars Quark  sector:    quarks  +  scalar  quarks

Quark-­‐gluon   plasma  

Gluon  plasma   +  mesons  

Unstable   phase

[Ghoroku, Ishihara, Nakamura ‘07]

Closed string

Open string Temp

Baryon  chemical  potenJal

The  road  to  real  QCD:    (2)

Supersymmetric  gauge  theory  +  quarks    (N=2  Super  QCD)

3

-4

(27)

(3)

Gluon  sector:    gluons  +  heavy  gluinos     Quark  sector:    quarks

Quark  gluon  plasma  

Hadron Instability?

Gluon  plasma   +  meson  

[Aharony, Sonnenschein, Yankielowicz ‘06]

Temp

Baryon  chemical  potenJal

The  road  to  real  QCD:    (3)

Non-­‐supersymmetric  SU(N)  gauge  theory  +  quarks  (Large  N    QCD)

3

-5

(28)

(4)

Gluon  sector:    gluons Quark  sector:    quarks

? Challenge ?

Temp

Baryon  chemical  potenJal

The  road  to  real  QCD:    (4)

Non-­‐supersymmetric  SU(3)  gauge  theory  +  quarks  (QCD)

3

-6

(29)

Various  applica8ons  to  cond-­‐mat

Holographic  superconducJvity

Scalar  condensaJon

[Hartnoll, Herzog, Horowitz ‘08]

Holographic  viscosity

Gravity  perturbaJon

[Kovtun, Son, Starinets ‘04]

3

-7

(30)

Superstringy  mathemaJcs  resolves     mysteries  in  strongly  correlated  systems  

1. Is superstring useful?

2. Duality connecting theories 3. Challenge to neutron stars

Road  map 7  pages

7  pages 5  pages

1

2

3

參考文獻

相關文件

6. To complete the ‘What’s Not’ column, students need to think about what used to be considered a fashionable thing to do, see, listen to, talk about and is no longer

Now, nearly all of the current flows through wire S since it has a much lower resistance than the light bulb. The light bulb does not glow because the current flowing through it

Generalized LSMA theorem: The low-energy states in gapped phases of SU (N ) spin systems cannot be triv- ially gapped in the thermodynamical limit if the total number of

• Many-body physics is essential for sub-keV detectors of neutrinos and dark matter. • High-quality many-body calculations can substantially reduce

• CEPC design has to maintain the possibility for SPPC, but there is no need now to firmly prove the feasibility of SPPC,.. scientifically

This kind of algorithm has also been a powerful tool for solving many other optimization problems, including symmetric cone complementarity problems [15, 16, 20–22], symmetric

If we want to test the strong connectivity of a digraph, our randomized algorithm for testing digraphs with an H-free k-induced subgraph can help us determine which tester should

“For Mother Tongue Education to be successful we need to help CMI students learn English