• 沒有找到結果。

Partial Fraction Expansion All the polynomials in this note are assumed to be complex polynomials

N/A
N/A
Protected

Academic year: 2022

Share "Partial Fraction Expansion All the polynomials in this note are assumed to be complex polynomials"

Copied!
5
0
0

加載中.... (立即查看全文)

全文

(1)

1. Partial Fraction Expansion

All the polynomials in this note are assumed to be complex polynomials.

A rational function R(z) = P (z)/Q(z) is a quotient of two polynomials P, Q with Q(z) 6=

0. By Fundamental Theorem of algebra,

Q(z) = q(z − a1)m1· · · (z − ar)mr, where a1, · · · , ar are distinct complex numbers and mi ≥ 1.

Proposition 1.1. Suppose Q(z) = Q1(z)Q2(z) is a product of polynomials such that Q1(z), Q2(z) are relatively prime, i.e. the greatest common divisor of Q1(z), Q2(z) is 1.

Then there exist P1(z), P2(z) so that P (z)

Q(z) = P1(z)

Q1(z)+ P2(z) Q2(z).

Proof. Since Q1(z) and Q2(z) are relatively prime, using division algorithm, we can find u1(z), u2(z) so that Q1(z)u1(z) + Q2(z)u2(z) = 1. Then

P (z)

Q(z) = 1 · P (z) Q(z)

= Q1(z)u1(z)P (z) + Q2(z)u2(z)P (z) Q1(z)Q2(z)

= u2(z)P (z)

Q1(z) +u1(z)P (z) Q2(z)

= P1(z)

Q1(z) + P2(z) Q2(z),

where P1(z) = u2(z)P (z) and P2(z) = u1(z)P (z). We complete the proof.  Corollary 1.1. Assume Q(z) = (z − a1)m1· · · (z − ar)mr where a1, · · · , ar are distinct.

Then

(1.1) P (z)

Q(z) = P1(z)

(z − a1)m1 + · · · + P2(z) (z − ar)mr.

Proof. We will prove the statement by induction on deg Q. Let Q1(z) = (z − a1)m1 and Q2(z) = (z − a2)m2· · · (z − ar)mr. By Lemma 1.1, we can find P1(z) and P10(z) so that

P (z)

Q(z) = P1(z)

(z − a1)m1 + P10(z) Q2(z). Since deg Q2 < deg Q, by induction hypothesis, we can write

P10(z)

Q2(z) = P2(z)

(z − a2)m2 + · · · + Pr(z) (z − ar)mr

for some polynomials P2(z), · · · , Pr(z). This implies (1.1).  Let us study the case P (z)/(z − a)m first. We may assume that deg P ≤ m − 1. Using division algorithm, we can find a0, · · · , am so that

(1.2) P (z) = am+ am−1(z − a) + · · · + a1(z − a)m−1. Then we obtain that

P (z)

Q(z) = a1

z − a+ a2

(z − a)2 + · · · + am (z − a)m.

1

(2)

In reality, how do we compute a0, · · · , am? In fact, ai= 1

(i − 1)!

di−1 dzi−1

P (z)

Q(z)(z − a)m z=a

.

Or, we can compute these numbers a1, · · · , am using residues. First, we observe that 1

2πi I

Cr(z)

(z − a)m−1P (z)

Q(z)dz = am

where r is small. Denote

R1(z) = P (z)

Q(z) − am

(z − a)m = P (z) − am

(z − a)m . By (1.2),

P (z) − am = am−1(z − a) + · · · + a1(z − a)m−1. Hence we find

R1(z) = am−1+ am−2(z − a) + · · · + a1(z − a)m−2

(z − a)m−1 .

Denote P1(z) = am−1+ am−2(z − a) + · · · + a1(z − a)m−2 and Q1(z) = (z − a)m−1. Then we have

P1(z)

Q1(z) = a1

z − a+ a2

(z − a)2 + · · · + am−1

(z − a)m−1.

Similarly, we can compute am−1 using residue. By induction, we can compute all ai. In general, we consider P (z)/Q(z) of the form (1.1). Let f1(z) be the rational function

f1(z) = P2(z)

(z − a2)m2 + · · · + Pr(z) (z − ar)mr. Then we can write

P (z)

Q(z) = a11 z − a1

+ a12

(z − a1)2 + · · · + a1m

(z − a1)m1 + f1(z).

Notice that a1 is not a pole of f1(z). For r small enough, f (z) is holomorphic on Dr(a1).

For 0 ≤ i ≤ m − 1, one has

z→alim1

1 i!

di−1

dzi−1f1(z)(z − a1)m1 = 0.

Using the previous observation.

z→alim1

1 i!

di−1 dzi−1

P (z)

Q(z)(z − a1)m1 = a1i. Similarly, for 1 ≤ s ≤ r, one has

z→alims

1 i!

di−1 dzi−1

P (z)

Q(z)(z − as)ms = asi. Here we write

R(z) =

ms

X

i=1

asi

(z − as)i + fs(z), fs(z) =X

i6=s

Pi(z) (z − ai)mi.

Or using the residue computation, for r small enough so that Dr(ai) excludes all aj for j 6= i. Then

1 2πi

I

Cr(ai)

P (z)

Q(z)(z − ai)mi−1dz = aimi.

(3)

If we set Hi(z) =Q

j6=i(z − aj)mj, then P (z)

Q(z)(z − ai)mi−1 = 1 z − ai

P (z) Hi(z).

We know P (z)/Hi(z) is holomorphic on Dr(a). By Cauchy integral formula, we obtain 1

2πi I

Cr(a)

P (z)/Hi(z)

z − ai dz = P (ai) Hi(ai).

This gives aimi = P (ai)/Hi(ai). Now, subtract R(z) from aimi/(z − ai)mi, we obtain R1(z) = R(z) − aimi

(z − ai)mi =

mi−1

X

j=1

aij

(z − ai)j + fi(z).

Inductively, we can find all ais for 1 ≤ s ≤ mi.

Example 1.1. Find the partial fraction expansion of R(z) = 3z2+ z + 1

(z − 1)2(z − 2)3. Let f1(z) and f2(z) be rational functions

f1(z) = A

z − 1+ B

(z − 1)2, f2(z) = C

z − 2+ D

(z − 2)2 + E (z − 2)3 so that R(z) = f1(z) + f2(z). Multiplying R(z) by z − 1, we find

R(z)(z − 1) = 1

z − 1·3z2+ z + 1

(z − 2)3 = A + B

z − 1+ f2(z)(z − 1).

Let r be small enough so that 2 does not belong to Dr(1) and hence f2(z) is holomorphic on Dr(1). By Cauchy-integral formula,

B = 1 2πi

I

Cr(1)

R(z)(z − 1)dz = 3 · 12+ 1 + 1 (1 − 2)3 = −5.

Subtracting R(z) from −5/(z − 2)2, we obtain R(z) − −5

(z − 2)2 = A

z − 1+ f2(z).

By simple calculation, R(z) − −5

(z − 2)2 = 3z2+ z + 1 + 5(z − 2)3

(z − 1)2(z − 2)3 = 5z3− 27z2+ 61z − 39

(z − 1)2(z − 2)3 = 5z2− 22z + 39 (z − 1)(z − 3)2. By Cauchy integral formula and by the fact that f2(z) is holomorphic on Dr(1),

A = 1 2πi

I

Cr(1)

5z2− 22z + 39

(z − 1)(z − 2)3dz = 5 · 1 − 22 · 1 + 39

(1 − 2)3 = −22.

On the other hand, f2(z) =



R(z) − −5 (z − 1)2



− −22

z − 1 = 5z2− 22z + 39

(z − 1)(z − 2)3 − −22 z − 1. Now, we know

f2(z) = 5z2− 22z + 39

(z − 1)(z − 2)3 − −22

z − 1 = 22z2− 105z + 137 (z − 2)3 .

(4)

Denote P (z) = 22z2− 105z + 137. Note that P (2) = 15, P0(2) = −17 and P00(2)/2! = 22.

We have (Taylor expansion of P (z) at z = 2)

P (z) = 15 − 17(z − 2) + 22(z − 2)2. Hence we find

f2(z) = P (z)

(z − 2)3 = 22

z − 2+ −17

(z − 2)2 + 15 (z − 2)3. We conclude that

3z2+ z + 1

(z − 1)2(z − 2)3 = −22

z − 1+ −5 (z − 1)2

 +

 22

z − 2+ −17

(z − 2)2 + 15 (z − 2)3



Proposition 1.2. (Special Case) Let a1, · · · , ar be distinct complex numbers and Q(z) = (z − a1) · · · (z − ar). Then

P (z) Q(z) =

r

X

i=1

P (ai)/Q0(ai) z − ai

. Proof. Let us assume that

P (z)

Q(z) = c1

z − a1 + · · · + cr z − ar. Then we know

(z − ai)P (z) Q(z) = c1

z − ai

z − a1 + · · · + ci−1

z − ai

z − ai−1 + ci+ ci+1

z − ai

z − ai+1+ · · · + cr

z − ai

z − an. Taking limit z → ai, we obtain

z→alimi

(z − ai)P (z) Q(z) = ci. On the other hand, by Q(ai) = 0,

z→alimi

Q(z)

z − ai = lim

z→ai

Q(z) − Q(ai)

z − ai = Q0(ai).

As long as we can show that Q0(ai) 6= 0,

z→alimi

(z − ai)P (z)

Q(z) = P (ai) Q0(ai). Notice that

Q(z) z − ai =Y

j6=i

(z − aj) ⇒ Q0(ai) = lim

z→ai

Q(z) z − ai =Y

j6=i

(ai− aj) 6= 0.

We prove that ci= P (ai)/Q0(ai). 

In the above case, since Q(z) has simple pole at ai, by residue calculus, P (ai)

Q0(ai) = Resai

P (z)

Q(z) = P (ai) Q

j6=i(ai− aj). Example 1.2. Find the partial fraction expansion of

R(z) = z2+ z + 1 (z − 1)(z − 2)(z − 3).

(5)

Write

R(z) = A

z − 1+ B

z − 2+ C z − 3.

Then A, B, C are residues of R(z) at 1, 2, 3 respectively. Choose r small enough so that Dr(1) does not contain 2, 3 and Dr(2) does not contain 1, 3 and Dr(3) does not contain 1, 2.

By Cauchy integral formula, A = 1

2πi I

Cr(1)

R(z)dz = 12+ 1 + 1 (1 − 2)(1 − 3) = 3

2 and

B = 1 2πi

I

Cr(2)

R(z)dz = 22+ 2 + 1

(2 − 1)(2 − 3) = −7 and

C = 1 2πi

I

Cr(3)

R(z)dz = 32+ 3 + 1

(3 − 1)(3 − 2) = 13 2 . Example 1.3. Find the partial fraction expansion of

R(z) = 1 z4+ 1.

The polynomial z4 + 1 has 4 distinct roots. We will denote them by {z1, z2, z3, z4} = {eiπ/4, eiπ/2, ei3π/4, ei3π/2}. Let us consider the partial fraction expansion of R(z) :

1

z4+ 1 = A1 z − z1

+ A2 z − z2

+ A3 z − z3

+ A4 z − z4

. The zero zi of z4+ 1 is a simple pole of R(z), and thus

Ai = Reszi(R(z)) = lim

z→zi

z − zi z4+ 1 = 1

4z3i.

Since zi4 = −1, zi3= −1/zi. This gives Ai = −zi/4. It is very interesting to see that if D is a closed disk containing all zi, then

1 2πi

I

C

R(z)dz =

4

X

i=1

Reszi(R(z)) = −z1+ z2+ z3+ z4

4 = 0

using Vieta’s formula. Here C is the boundary of D.

參考文獻

相關文件

We denote V (T ) the set of all common zeros of polynomials in T, i.e.. We completes

[r]

All the spaces, algebras in this notes are assumed to be over

To prove this theorem, we need to introduce the space of vector valued continuous func- tions.. This theorem will be

(1) In this exercise, you are going to prove the fundamental Theorem of algebra: any nonconstant complex polynomial must have a root in C. Let us prove it by

Space of Harmonic Polynomials. Let R[x, y] be the space of polynomials in x, y

Find the area of the resulting

In this paper we study the stability question of the inverse bound- ary value problem for the Schr¨odinger equation with a potential and the conductivity equation by partial