• 沒有找到結果。

修飾性無電渡銅觸媒之製備與應用

N/A
N/A
Protected

Academic year: 2021

Share "修飾性無電渡銅觸媒之製備與應用"

Copied!
6
0
0

加載中.... (立即查看全文)

全文

(1)

(2)  : NSC-87-2214-E-011-005 : 86/8/1 - 87/7/31  :

(3)   

(4) Zn,Cr  

(5)   !  " # $  %

(6) &'1%( 5%)*+,BET, XRD, TPR, SEM, EDS-./. 01#23456789:;<= >1?@<1 ABETBCDE#F(

(7) # GHIJKLMNOPQR$STU'XRD? SEMVWDE#

(8) X

(9) YBZ1? HIJ[\UATPR]^_`a

(10)  bcK(defAl2O3ghi%jkl, 01#=mZn =nopqrXst uvwxay#$Cr _z({| 8}~p#€CuOno‚ƒ„ UAEDS †‡DE# HI"

(11) deˆ ‰Š‹#ŒZn $Ž0.4#$Cr  Ž1A789:VW`a#2~3%

(12)  c_ ‘X’“>1f@ <1#$Cr”,•ŠZn–— ˜@<1™š?›œžSEM3?ESCA BCVW_Ÿ#J f¡V¢£¤ >1¥¦LU

(13) &§% #X ¨D%¡Vay?§©ªJ «¬U

(14) &t% #¡Vay­®D¯#°J © ª’‰ The purpose of this study was to investigate the effects of additives (Zn/Cr) on the electroless copper catalyst. Impregnation method was adopted to add the additives onto the catalysts. The addition of additives was varied from 1% to 5%. All prepared catalysts were characterized by BET, XRD, TPR, chemisorption, SEM and EDS. The catalysts were further tested by n-butanol dehydrogenation reaction to identify their activities and stabilities. It was found from BET analyses that the addition of additives decreases the total surface area due to blockage of some small pores. However, the addition,. as can be seen from XRD and SEM, would increase copper dispersion and hence the copper surface area. TPR profiles indicated that the addition affects the interaction characters between copper and Al2O3. Zn addition would cause the TPR curve shifting to higher temperature, while Cr addition would produce two H2 peaks indicating the change of reduction path of copper oxides. EDS data showed that the maximum of additive to copper ratio on the catalyst surface is 0.4 for Zn and 1.0 for Cr. N-butanol dehydrogenation reaction data showed that the catalysts with 2-3% additives have better activity and stability, and the one with Cr addition present better performance than Zn addition. During the stability test, the results from chemisorption data, SEM photos and ESCA analyses showed that coking and sintering are major factors for the catalyst deactivation. The catalysts with lower additive loadings present significant sintering but less coking and vice versa for higher additive loadings. ±²³Af´ µ¶ ·P,Y6¸789:© ¹"# º»¼½ ¾¿·, »ÀÁÂ#ÃYÄÅuªÆYÇ}mÈ¡ $¤É­)YÊË?ÀÁ¾¿ gh ÌÍÎ%#¢+, noϐdeÐÑÒmdePno$C gh"¾¿Ó– ÔÕ¬# Ö01X×Y»ÀÁ¾ØÕ¬ 3¾¿ –Ù ŒœÚn ­Û#ÜÝXÞ ßà  áâ 89:":,#=ã2  :,Yä › 89:"åÝ#XÞ:,æçèß é Yá6Bê9:"$ÜëXÞ ,ß  ìíîïîïð›89: "#2XÞ ßàñä›é 0 1?=:, ìíîïîï89:åXœÚ3 éòó¾¿ :,Yôõ678 9:"ºö'÷Y.¾¿.

(15) Ô· ?. ,Y6¸789:% #.Iøù %01#)*Š’=fúØ%  %ûü1ýþ 

(16)  3„ %>1?@<1. 4.2 X-Ray@ABC AXRDVW_`a&1.­,¢Zn»Cr  #B601pCD2. XZn% #icµ¶ $_1 Ó01pEªF¯Zn&5$X5 GH#°cicµ¶ ý®¨D„ 3.  XZn% #icµ¶ $# ý_®IJ_KL(01pEªKF¯ Cr&5$SM#$cicµ¶ $# @ApEª ›«¬­®¨D.  .  ¾¿f;<  3 Al2O3 h# # ¯ PdCl2 >›ã

(17) ¾200ml Ò#c>›gh# 9:# ¤

(18) ãc ,.¢Š‹ ­-ZnCr-de! "# YÇ}ôm3450È¡3M*#¤ É ¾¿åÉ ¢ È¡ #ÃZnCr-de#ˆã    ±È¡#±¸ 3{ É.¾¿ ´# Y 

(19)   ˜

(20) È¡f±È¡© ¹=01«¬ 01;<3BET™& %HIJf N ‰MB!#3XRD™< HIdeV "#åÝ3TPR?SEMEDSESCA;<  01#23›œž&™HIJ. 4.3 ©unoBC A]12_Ÿ#XN¤3 #Oh"~p¬PfQR ST#Qnop#U=úVWGh8 }&/~ptª#ý’QR Û åÝA]m_1Ó#XZn #=nopqrXstuwx«X#=m Zn&5% ay0רD X×YZn% #Cr%  TPR]^(]34)DEÓ{Y ~p#|Óa Ž200Z[qr#$ ±|ý ‰Ž220ž?#UŠ‹‰MF (cCr&$Xú­){|~p¬¤ _\¢AYF(Cr¤3#£¤CuO no

(21) ©mK3Cu+1 ¬/] #Ã^ Cuo ¬_icµ¶ $#Y1%Cr* `_KL(±|~pÓa#°aiBb «X­¢®D¯#2%Cr #* ±|~pc®¨D_3KL(#U=Š‹d

(22) |~p(e3%Cr*±|~pŠ ‹þ‰#f$ÅCr&g5%*|~pE ªÃªd

(23) ±|~pcicµ¶$#( Cr&3%*hz(¨D{Y~p#$CuCr(5)cic =±|~pEªþ‰#HEµ¶  Cr&iÛ#3Cuohno p01KiD¯. 9: ¢3#9:$ 456789: 9:%Æ: ,&&0.8g 456%'()&150ml/min *iL*(τ)&0.008g-catal.hr/gmol uª : 210o - 290oC.  +VWfù, 4.1 BETHIJfæ-N H1.É 9:/BETGH IJ0æ-N AHm_1ÓAl2O3gh‘X ˆ‰GHIJ?ˆMæ-N #$ ã#AY23MNOPR4#LGHIJ M#æ-N 5Š’67  0˜

(24) È¡Ãno #_1Óã ڑX’‰GHIJ Zn/Cr  #=GHIJ’8ڏM9:– 1˜

(25) ±È¡ (cicµ¶)#=GHIJ ûü1’È¡ (icµ¶)M#;¨ /˜È¡©¹K£¤ HI<=1>. 4.4 deHIJ™& H2 %HIJBZªf j ‰MAVW_Ÿ#ZnCrb*X

(26) Y "deBZ#Øj M#HIJ5‰#'Hmk_KL(Cr ú \ 5    H I J Š Zn–Û CuZn-icµ¶$#F¯Zn&5#HI JlmST#ÅZn&5%*g(ˆMnU 2.

(27) Š‹$X¨DûZn $# ic µ¶ iGHIJ¥¦©ªÔ· ?#$ cicµ¶ ýXFZn5$Xû ‰ GHCr $# ic?cic{Yµ¶Å m‹_`a

(28) &1% =BETGHI J ›©ªYŽµ¶‘ˆM#$2%3%û ˆ‰#(5%*• M«X’ê9:

(29) de‚ƒ«X#“”•,cicµ¶Åm CuZn(1)CuZn(3)CuCr(1)0CuCr(3)-  ›œž™š#=VW%H4#AÅm_` a# ˜

(30) 9:%ã#CuZn(1)fCuCr(1)  HIJ‰ST#DE=¡V«X†‡#$ CuZn(3)fCuCr(3) HIJ ›©ªýM –Û#€¡V”:’­¨D#VWf>1 ¥¦GHS—. CuZn-cicµ¶$#Zn 2% Xˆ‰ HIJU0icµ¶ SŠ#_1Ócicµ¶ aiBZªûü1’M#HE˜ È¡©¹Ãdeb* ú\ £¤BZª„ 1’o ڏM CuCr-icµ¶# Cr&3%* %HIJg (ˆ‰#ÅCr&g5%*HIJ9$ M#H Epg(—BZª#33%Cr¤3ˆ “S’YCuCr-icµ¶ #CuCr-cicµ¶  aiBZªûü1’M#$HIJ › «¬fCuCr-icµ¶q 4.5 rs/*D#t ASEMuv_1Ó#w¾¿¤% #XxdePyYAl2O3gh"#=i 2z{] U$˜

(31) È¡Ãno  ý_`ade%iXz{CD# z{D¤Df¢AYÈ¡

(32) © %¡V ú CDZnµ¶ =HIV"fCu-cS T#$Cr&1%?2% =HI V"öfCu-cSTUÅCr&g3%*# H Io*|aÔ·}~B!01#o] Yo*%iz{öV€UÃ5Cr &(5%*#_z( HIx¨DV "#=i_KL(‚ƒ„P<#_3; ¨ ›œž™Ø%HIJ M#HECr ¤3Š‹

(33) tKbqµ¶ HIo* †‡‚ƒ#L$ˆ§eHIJ. ˜™š›œ 1. Chang, H.F., and Saleque, M.A., J. Mol. Catal., 88, 223(1994). 2. Chang, H.F., Saleque, M.A., Hsu, W.S., Lin, W.H., J. Mol. Catal., 109, 249 (1996). 3. Chen, Y.W., Tu, Y.J. and Li, C.P., J. Mol. Catal., 89, 179 (1994). 4. Deng, J., Zhang, X. and Min, Ε., Applied Catalysis, 37, 339, 408 (1991) 5. Ko, S.H. and Chou,T.C., J CIChE, 24, 6, 393 (1993). 6. Lin, Y.M., Wang, I. And C.T. Yeh, Proceedings of The Asia Pacific Conference on Catalysis, Dec. 1987, Taipei, Taiwan. 7. Nozaki,T., T.Ikeda and S.Yano, Nippon Kagaku Kaishi, 6, 822 (1986). 8. Pepe,F., Polini,R. and Stoppa,L., Catal. Lett., 14, 15 (1992). 9. Ruwet,M.; S.Ceckiewicz and B.Delhnon, Ind. Eng. Chem. Res., 26, 1981 (1987). 10. Sasahara, N., Fukuhara, C. and A. Igarashi, Shokubai, 33(5), 408 (1991). 11. Shiau, C.Y., and Tsai, C.T. , CIChE J., 28, 351 (1997). 12. Shiau, C.Y., and Tsai, C.T. , JCT&B, in press (1998).. 4.6 >1 ]5&6N  ­)uªÆ9:> 1#]7&8ý‰  ­)uªÆ9: >1AŠ]_3`a N µ¶m# icµ¶31%ZnDaˆ“>1#$cicµ ¶32%Znˆ“; ‰ µ¶m#ic µ¶3%CrDaˆ“>1#$cicµ¶ 3%Crˆ“ 4.7 >1¥¦øù H3 ˜789:ã%BETGHIJf æ-N Š’9:/ã #_`aúX  ˜9:ã#=GHIJ0æ-N ‹X ƈ«¬#8Zn/Cr $ #= ›«¬SÅD¯Zn»Cr  $#=9:ãGHIJ/æ-N ›fŒ¯fŽµ¶9:/S)G HåÝ#  >1¥¦ã#BETGHIJ K M#= ›ªF(

(34) ɸf. H 1  žŸ HIJfæ-N . 3. BET .

(35)  (m2/g). Al2O3. 156.3. 65.8. Cu-f. 127.4. 67.2. Cu-c. 133.8. 69.5. .

(36) CuZn(1)-ic. 123.5. 67.8. CuCr(5)-cic. 178.0. 26.3. 37.6. CuZn(2)-ic. 120.0. 69.8. CuZn(2)K(2). 167.5. 24.7. 39.9. CuZn(3)-ic. 112.3. 72.3. CuCr(2)K(2). 198.3. 29.3. 33.8. CuZn(5)-ic. 116.9. 70.8. CuZn(1)-cic. 121.0. 69.7. CuZn(2)-cic. 119.8. 70.2. CuZn(3)-cic. 114.5. 70.6. CuZn(5)-cic. 112.8. 71.4. CuCr(1)-ic. 123.0. 69.8. Cu-f. 113.5. 61.4. CuCr(2)-ic. 121.7. 69.6. Cu-c. 113.5. 61.9. CuCr(3)-ic. 120.0. 69.7. CuZn(1)-ic. 115.9. 63.3. CuCr(5)-ic. 108.8. 73.5. CuZn(2)-ic. 112.8. 63.5. CuCr(1)-cic. 117.5. 69.2. CuZn(3)-ic. 106.2. 64.5. CuCr(2)-cic. 115.5. 70.2. CuZn(5)-ic. 109.9. 63.9. CuCr(3)-cic. 115.1. 71.5. CuZn(1)-cic. 111.7. 66. CuCr(5)-cic. 110.2. 72.8. CuZn(2)-cic. 108.8. 66.4. CuZn(3)-cic. 103.6. 66.5. CuZn(5)-cic. 97.3. 66.7. CuCr(1)-ic. 112.7. 62.5.    (m2/g) (m2/g). CuCr(2)-ic. 104.3. 66.5. CuCr(3)-ic. 101.8. 67. CuZn(1)-cic. 150.2. 98.7. CuCr(5)-ic. 96.1. 69.4. CuZn(3)-cic. 153.2. 138.5. CuCr(1)-cic. 112.8. 64.2. CuCr(1)-cic. 181.6. 147.7. CuCr(2)-cic. 101.2. 65.1. CuCr(3)-cic. 189.7. 170.3. CuCr(3)-cic. 100.7. 66.5. CuCr(5)-cic. 97.8. 68.9. H 3  žŸ HIJfæ-N .   H 49:/ã HIJ ›«¬. H 2 HIJBZªfj. BET .

(37)  (m2/g).  .

(38) . 117.4. 17.3. 57.0. CuZn(1)-ic. 149.1. 22.0. 44.9. CuZn(2)-ic. 140.3. 20.7. 47.7. CuZn(3)-ic. 133.7. 19.7. 50.1. CuZn(5)-ic. 122.4. 18.1. 54.7. CuZn(1)-cic. 150.2. 22.2. 44.5. CuZn(2)-cic. 160.9. 23.7. 41.6. CuZn(3)-cic. 153.2. 22.6. 43.7. CuZn(5)-cic. 149.3. 22.1. 44.8. CuCr(1)-ic. 180.5. 26.6. 37.1. CuCr(2)-ic. 182.4. 26.9. 36.7. CuCr(3)-ic. 195.3. 28.8. 34.2. CuCr(5)-ic. 167.1. 24.7. 40.1. CuCr(1)-cic. 181.6. 26.8. 36.8. CuCr(2)-cic. 185.5. 27.4. 36.1. CuCr(3)-cic. 189.7. 28. 35.3. Zn (5 ). Hydrogen Consum pti on. Cu-c. Z n (3). Z n (2). Zn (1 ). 0. 100. 2 00. 300. 400. 5 00. Temperature (C). Fig 1. TPR curve for CuZn-ic series catalysts. 4. ydrog en Consum pti on.    (m2/g) (%). ‰M.  9:ã¡. Z n( 5). Z n( 3) Z n( 2).

(39) Fig 2. TPR curve for CuZn-cic series catalysts Fig 5. Conversion for CuZn-ic series catalysts. 50. 2 70 C. 40. 25 0 C. Conversion (%). Hydrogen Consumption. Cr( 5). Cr(3 ). Cr(2 ). Cr(1 ). 30. 23 0 C. 20. 2 10 C. 10 0. 1 00. 20 0. 30 0. 4 00. 50 0. T e mp e rat u re ( C). 0. 1. 2. 3. 4. 5. Zn Loa ding (% ). Fig 3. TPR curve for CuCr-ic series catalysts Fig 6. Conversion for CuZn-cic series catalysts. HydrogenConsumption. 50. 2 70 C 250 C. 40. Conversion(%). Cr(5 ). Cr(3 ). Cr(2). 30. 230 C. 20. 210 C. Cr(1 ). 10 0. 1 00. 20 0. 300. 4 00. 50 0. T em p ra t u re (C ). 0. 1. 2. 3. 4. 5. Cr Loading (% ). Fig 4. TPR curve for CuCr-cic series catalysts Fig 7. Conversion for CuCr-ic series catalysts. 50. 50. 2 70 C. 250 C 30. 23 0 C 20. 5. Conversion(%). Conversion ( %). 270 C 40. 40. 2 50 C. 30. 2 30 C. 20.

(40) Q0LMR:STUVOP M W0LM:6XYZ>)[\]^_   `0abcdefghi3jk. Fig 8. Conversion for CuCr-cic series catalysts.   

(41)  NSC-87-2214-E-011-005  !"#$%&'()*+,-. /012324567 1. 89Cr/ Zn:;<=> 

(42) Cr Zn?. 2. @ABC389D? 3. @AEF3G25HIJ? K0LM:N12OP M. 6.

(43)

參考文獻

相關文件

Play the audio track for Activity 6, and have students match the given questions with one of the responses they hear.. These questions and responses are meant to provide

Play the audio track for Activity 6, and have students match the given questions with one of the responses they hear.. These questions and responses are meant to provide

• Non-uniform space subdivision (for example, kd tree and octree) is better than uniform grid kd-tree and octree) is better than uniform grid if the scene is

The/That new smartphone has a better camera and (a) thinner screen than the/that old

We do it by reducing the first order system to a vectorial Schr¨ odinger type equation containing conductivity coefficient in matrix potential coefficient as in [3], [13] and use

After students have mastered the skills of performing addition, subtraction and mixed operations of addition and subtraction of fractions with different

 develop a better understanding of the design and the features of the English Language curriculum with an emphasis on the senior secondary level;..  gain an insight into the

In addition that the training quality is enhanced with the improvement of course materials, the practice program can be strengthened by hiring better instructors and adding