Data Mining Analysis (breast-cancer data)
Jung-Ying Wang
Register number: D9115007, May, 2003
Abstract
In this AI term project, we compare some world renowned machine learning tools.
Including WEKA data mining software (developed at the University of Waikato, Hamilton, New Zealand); MATLIB 6.1 and LIBSVM (developed at the Nation Taiwan University, by Chih-Jen Lin).
Contents
1 Breast-cancer-Wisconsin dataset summary ... 2
2 Classification - 10 fold cross validation on breast-cancer-Wisconsin dataset ... 8
2.1 Results for: Naive Bayes... 8
2.2 Results for: BP Neural Network ... 9
2.3 Results for: J48 decision tree (implementation of C4.5) ... 10
2.4 Results for: SMO (Support Vector Machine) ... 11
2.5 Results for: JRip (implementation of the RIPPER rule learner)... 12
3 Classification – Compare with other paper results ... 14
3.1.1 Results for training data: Naive Bayes... 14
3.1.2 Results for test data: Naive Bayes ... 15
3.2.1 Results for training data: BP Neural Network ... 16
3.2.2 Results for test data: BP Neural Network ... 16
3.3.1 Results for training data: J48 decision tree (implementation of C4.5) ... 17
3.3.2 Results for test data: J48 decision tree (implementation of C4.5) ... 19
3.3.1 Results for training data: J48 decision tree (implementation of C4.5) ... 19
3.4.1 Results for training data: SMO (Support Vector Machine) ... 20
3.4.2 Results for test data: SMO (Support Vector Machine)... 21
3.5.1 Results for training data: JRip (implementation of the RIPPER rule learner). 22 3.5.2 Results for test data: JRip (implementation of the RIPPER rule learner)... 23
4 Summary... 25
5. Reference ... 26
1. Breast-cancer-Wisconsin dataset summary
In our AI term project, all chosen machine learning tools will be use to diagnose cancer Wisconsin dataset. To be consistent with the literature [1, 2] we removed the 16 instances with missing values from the dataset to construct a new dataset with 683 instances.
Brief information from the UC Irvine machine learning repository:
Located in breast-cancer-Wisconsin sub-directory, filenames root:
breast-cancer-Wisconsin.
Currently contains 699 instances.
2 classes (malignant and benign).
9 integer-valued attributes.
Attribute Information:
Table 1 shows data attribute information
# Attribute Domain
1. Sample code number id number
2. Clump Thickness 1 - 10
3. Uniformity of Cell Size 1 - 10 4. Uniformity of Cell Shape 1 - 10
5. Marginal Adhesion 1 - 10
6. Single Epithelial Cell Size 1 - 10
7. Bare Nuclei 1 - 10
8. Bland Chromatin 1 - 10
9. Normal Nucleoli 1 - 10
10. Mitoses 1 - 10
11. Class 2 for benign,
4 for malignant
Missing attribute values: 16
There are 16 instances in Groups 1 to 6 that contain a single missing (i.e., unavailable) attribute value, now denoted by "?".
Class distribution:
Benign: 458 (65.5%) Malignant: 241 (34.5%)
Clump Thickness
139
50 104
79 128
33 23
44 14
69
0 20 40 60 80 100 120 140 160
1 2 3 4 5 6 7 8 9 10
Domain
Freq.
Figure 1: bar graph summaries for the clump thickness attributes in the training data.
Uniformity of Cell Size
373
45 52
38 30 25 19 28
6 67
0 50 100 150 200 250 300 350 400
1 2 3 4 5 6 7 8 9 10
Domain
Freq.
Figure 2: Bar graph summaries for the Uniformity of Cell Size attributes in the training data
Uniformity of Cell Shape
346
58 53 43 32 29 30 27
7 58
0 50 100 150 200 250 300 350 400
1 2 3 4 5 6 7 8 9 10
Domain
Freq.
Figure 3: Bar graph summaries for the Uniformity of Cell Shape attributes in the training data
Marginal Adhesion
393
58 58
33 23 21 13 25
4 55
0 50 100 150 200 250 300 350 400 450
1 2 3 4 5 6 7 8 9 10
Domain
Freq.
Figure 4: Bar graph summaries for the Marginal Adhesion attributes in the training data
Single Epithelial Cell Size
44 376
71 48 39 40
11 21 2
31 0
50 100 150 200 250 300 350 400
1 2 3 4 5 6 7 8 9 10
Domain
Freq.
Figure 5: Bar graph summaries for the Single Epithelial Cell Size attributes in the training data
Bare Nuclei
402
30 28 19 30
4 8 21 9
132
0 50 100 150 200 250 300 350 400 450
1 2 3 4 5 6 7 8 9 10
Domain
Freq.
Figure 6: Bar graph summaries for the Bare Nuclei attributes in the training data
Bland Chromatin
150 160 161
39 34
9 71
28
11 20
0 20 40 60 80 100 120 140 160 180
1 2 3 4 5 6 7 8 9 10
Domain
Freq.
Figure 7: Bar graph summaries for the Bland Chromatin attributes in the training data
Normal Nucleoli
432
36 42
18 19 22 16 23 15
60
0 50 100 150 200 250 300 350 400 450 500
1 2 3 4 5 6 7 8 9 10
Domain
Freq.
Figure 8: Bar graph summaries for the Normal Nucleoli attributes in the training data
Mitoses 563
35 33
12 6 3 9 8 0 14
0 100 200 300 400 500 600
1 2 3 4 5 6 7 8 9 10
Domain
Freq.
Figure 9: Bar graph summaries for the Mitoses attributes in the training data Table 2 shows data summary statistics.
Domain 1 2 3 4 5 6 7 8 9 10 Sum
Clump Thickness 139 50 104 79 128 33 23 44 14 69 683 Uniformity of
Cell Size
373 45 52 38 30 25 19 28 6 67 683
Uniformity of Cell Shape
346 58 53 43 32 29 30 27 7 58 683
Marginal Adhesion
393 58 58 33 23 21 13 25 4 55 683
Single Epithelial Cell Size
44 376 71 48 39 40 11 21 2 31 683
Bare Nuclei 402 30 28 19 30 4 8 21 9 132 683
Bare Nuclei 150 160 161 39 34 9 71 28 11 20 683
Normal Nucleoli 432 36 42 18 19 22 16 23 15 60 683
Mitoses 563 35 33 12 6 3 9 8 0 14 683
Sum 2843 850 605 333 346 192 207 233 77 516
2 Classification - 10 fold cross validation on breast-cancer-Wisconsin dataset
First we use the data mining tools WEKA to do the training data prediction. In here, we will use 10 fold cross validation on training data to calculate the machine learning rules their performance. The results are as follows:
2.1 Results for: Naive Bayes
=== Run information ===
Scheme: weka.classifiers.bayes.NaiveBayes Relation: breast
Instances: 683 Attributes: 10
Test mode: 10-fold cross-validation Time taken to build model: 0.08 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances 659 96.4861 % Incorrectly Classified Instances 24 3.5139 % Kappa statistic 0.9238
K&B Relative Info Score 62650.9331 %
K&B Information Score 585.4063 bits 0.8571 bits/instance Class complexity | order 0 637.9242 bits 0.934 bits/instance Class complexity | scheme 1877.4218 bits 2.7488 bits/instance Complexity improvement (Sf) -1239.4976 bits -1.8148 bits/instance Mean absolute error 0.0362
Root mean squared error 0.1869 Relative absolute error 7.9508 % Root relative squared error 39.192 % Total Number of Instances 683
=== Confusion Matrix ===
a b <-- classified as 425 19 | a = 2
5 234 | b = 4
2.2 Results for: BP Neural Network
=== Run information ===
Scheme: weka.classifiers.functions.neural.NeuralNetwork -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a
Relation: breast Instances: 683 Attributes: 10
Test mode: 10-fold cross-validation
=== Classifier model (full training set) ===
Time taken to build model: 32.06 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances 650 95.1684 % Incorrectly Classified Instances 33 4.8316 % Kappa statistic 0.8943
K&B Relative Info Score 60236.9181 %
K&B Information Score 562.8499 bits 0.8241 bits/instance Class complexity | order 0 637.9242 bits 0.934 bits/instance Class complexity | scheme 176.4694 bits 0.2584 bits/instance Complexity improvement (Sf) 461.4548 bits 0.6756 bits/instance Mean absolute error 0.0526
Root mean squared error 0.203 Relative absolute error 11.5529 % Root relative squared error 42.5578 % Total Number of Instances 683
=== Confusion Matrix ===
a b <-- classified as 425 19 | a = 2
14 225 | b = 4
2.3 Results for: J48 decision tree (implementation of C4.5)
=== Run information ===
Scheme: weka.classifiers.trees.j48.J48 -C 0.25 -M 2 Relation: breast
Instances: 683 Attributes: 10
Test mode: 10-fold cross-validation
=== Classifier model (full training set) ===
J48 pruned tree --- a2 <= 2
| a6 <= 3: 2 (395.0/2.0)
| a6 > 3
| | a1 <= 3: 2 (11.0)
| | a1 > 3
| | | a7 <= 2
| | | | a4 <= 3: 4 (2.0)
| | | | a4 > 3: 2 (2.0)
| | | a7 > 2: 4 (8.0) a2 > 2
| a3 <= 2
| | a1 <= 5: 2 (19.0/1.0)
| | a1 > 5: 4 (4.0)
| a3 > 2
| | a2 <= 4
| | | a6 <= 2
| | | | a4 <= 3: 2 (11.0/1.0)
| | | | a4 > 3: 4 (3.0)
| | | a6 > 2: 4 (54.0/7.0)
| | a2 > 4: 4 (174.0/3.0) Number of Leaves : 11 Size of the tree : 21
Time taken to build model: 0.08 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances 654 95.754 % Incorrectly Classified Instances 29 4.246 % Kappa statistic 0.9062
K&B Relative Info Score 60273.2845 %
K&B Information Score 563.1897 bits 0.8246 bits/instance Class complexity | order 0 637.9242 bits 0.934 bits/instance Class complexity | scheme 6558.414 bits 9.6024 bits/instance Complexity improvement (Sf) -5920.4898 bits -8.6684 bits/instance Mean absolute error 0.0552
Root mean squared error 0.1962 Relative absolute error 12.123 % Root relative squared error 41.1396 % Total Number of Instances 683
=== Confusion Matrix ===
a b <-- classified as 432 12 | a = 2
17 222 | b = 4
2.4 Results for: SMO (Support Vector Machine)
=== Run information ===
Scheme: weka.classifiers.functions.supportVector.SMO -C 1.0 -E 1.0 -G 0.01 -A 1000003 -T 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1
Relation: breast Instances: 683 Attributes: 10
Test mode: 10-fold cross-validation
=== Classifier model (full training set) ===
SMO
Classifier for classes: 2, 4 BinarySMO
Machine linear: showing attribute weights, not support vectors.
1.5056 * (normalized) a1 + 0.2163 * (normalized) a2 + 1.2795 * (normalized) a3 + 0.6631 * (normalized) a4 + 0.901 * (normalized) a5
+ 1.5154 * (normalized) a6 + 1.2332 * (normalized) a7 + 0.7335 * (normalized) a8 + 1.2115 * (normalized) a9 - 2.598
Number of kernel evaluations: 16169 Time taken to build model: 0.53 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances 663 97.0717 % Incorrectly Classified Instances 20 2.9283 % Kappa statistic 0.9359
K&B Relative Info Score 63700.8732 %
K&B Information Score 595.2169 bits 0.8715 bits/instance Class complexity | order 0 637.9242 bits 0.934 bits/instance Class complexity | scheme 21480 bits 31.4495 bits/instance Complexity improvement (Sf) -20842.0758 bits -30.5155 bits/instance Mean absolute error 0.0293
Root mean squared error 0.1711 Relative absolute error 6.4345 % Root relative squared error 35.8785 % Total Number of Instances 683
=== Confusion Matrix ===
a b <-- classified as 432 12 | a = 2
8 231 | b = 4
2.5 Results for: JRip (implementation of the RIPPER rule learner)
=== Run information ===
Scheme: weka.classifiers.rules.JRip -F 3 -N 2.0 -O 2 -S 1 Relation: breast
Instances: 683 Attributes: 10
Test mode: 10-fold cross-validation
=== Classifier model (full training set) ===
JRIP rules:
===========
(a2 >= 4) and (a7 >= 5) => class=4 (148.0/2.0) (a6 >= 3) and (a1 >= 7) => class=4 (50.0/0.0) (a3 >= 4) and (a4 >= 4) => class=4 (22.0/2.0) (a6 >= 4) and (a3 >= 3) => class=4 (19.0/5.0) (a7 >= 4) and (a1 >= 5) => class=4 (8.0/3.0) (a8 >= 3) and (a1 >= 6) => class=4 (2.0/0.0) => class=2 (434.0/2.0)
Number of Rules : 7
Time taken to build model: 0.19 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances 653 95.6076 % Incorrectly Classified Instances 30 4.3924 % Kappa statistic 0.904
K&B Relative Info Score 59761.5689 %
K&B Information Score 558.4083 bits 0.8176 bits/instance Class complexity | order 0 637.9242 bits 0.934 bits/instance Class complexity | scheme 4444.9587 bits 6.508 bits/instance Complexity improvement (Sf) -3807.0344 bits -5.574 bits/instance Mean absolute error 0.059
Root mean squared error 0.2019 Relative absolute error 12.9577 % Root relative squared error 42.3262 % Total Number of Instances 683
=== Confusion Matrix ===
a b <-- classified as 426 18 | a = 2
12 227 | b = 4
3. Classification – Compare with other paper results
Above machine learning tools will use in this section to diagnose cancer Wisconsin dataset. To be consistent with the literature [1, 2] we removed the 16 instances with missing values from the dataset to construct a dataset with 683 instances. The first 400 instances in the dataset are chosen as the training data, and the remaining 283 as the test data.
3.1.1 Results for training data: Naive Bayes
=== Run information ===
Scheme: weka.classifiers.bayes.NaiveBayes Relation: breast_training
Instances: 400 Attributes: 10
Test mode: evaluate on training data
=== Classifier model (full training set) ===
Naive Bayes Classifier
Class 2: Prior probability = 0.57 Class 4: Prior probability = 0.43
Time taken to build model: 0.02 seconds
=== Evaluation on training set ===
=== Summary ===
Correctly Classified Instances 382 95.5 % Incorrectly Classified Instances 18 4.5 % Kappa statistic 0.9086
K&B Relative Info Score 36321.4474 %
K&B Information Score 357.7414 bits 0.8944 bits/instance Class complexity | order 0 393.9122 bits 0.9848 bits/instance Class complexity | scheme 661.9164 bits 1.6548 bits/instance Complexity improvement (Sf) -268.0042 bits -0.67 bits/instance Mean absolute error 0.0445
Root mean squared error 0.2068 Relative absolute error 9.0892 % Root relative squared error 41.794 % Total Number of Instances 400
=== Confusion Matrix ===
a b <-- classified as 216 13 | a = 2
5 166 | b = 4
3.1.2 Results for test data: Naive Bayes
=== Run information ===
Scheme: weka.classifiers.bayes.NaiveBayes Relation: breast_training
Instances: 400 Attributes: 10
Test mode: user supplied test set: 283 instances
=== Classifier model (full training set) ===
Naive Bayes Classifier
Class 2: Prior probability = 0.57 Class 4: Prior probability = 0.43
Time taken to build model: 0.02 seconds
=== Evaluation on test set ===
=== Summary ===
Correctly Classified Instances 277 97.8799 % Incorrectly Classified Instances 6 2.1201 % Kappa statistic 0.9431
K&B Relative Info Score 24653.9715 %
K&B Information Score 242.8248 bits 0.858 bits/instance Class complexity | order 0 256.4813 bits 0.9063 bits/instance Class complexity | scheme 580.1143 bits 2.0499 bits/instance Complexity improvement (Sf) -323.6331 bits -1.1436 bits/instance Mean absolute error 0.024
Root mean squared error 0.1446 Relative absolute error 5.1968 % Root relative squared error 30.9793 % Total Number of Instances 283
=== Confusion Matrix ===
a b <-- classified as 210 5 | a = 2
1 67 | b = 4
3.2.1 Results for training data: BP Neural Network
=== Run information ===
Scheme: weka.classifiers.functions.neural.NeuralNetwork -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a
Relation: breast_training Instances: 400
Attributes: 10
Test mode: evaluate on training data
=== Classifier model (full training set) ===
Time taken to build model: 4.74 seconds
=== Evaluation on training set ===
=== Summary ===
Correctly Classified Instances 395 98.75 % Incorrectly Classified Instances 5 1.25 % Kappa statistic 0.9746
K&B Relative Info Score 38178.7691 %
K&B Information Score 376.0348 bits 0.9401 bits/instance Class complexity | order 0 393.9122 bits 0.9848 bits/instance Class complexity | scheme 29.2867 bits 0.0732 bits/instance Complexity improvement (Sf) 364.6255 bits 0.9116 bits/instance Mean absolute error 0.0253
Root mean squared error 0.1094 Relative absolute error 5.1599 % Root relative squared error 22.1133 % Total Number of Instances 400
=== Confusion Matrix ===
a b <-- classified as 224 5 | a = 2
0 171 | b = 4
3.2.2 Results for test data: BP Neural Network
=== Run information ===
Scheme: weka.classifiers.functions.neural.NeuralNetwork -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a
Relation: breast_training Instances: 400
Attributes: 10
Test mode: user supplied test set: 283 instances
=== Classifier model (full training set) ===
Time taken to build model: 5 seconds
=== Evaluation on test set ===
=== Summary ===
Correctly Classified Instances 278 98.2332 % Incorrectly Classified Instances 5 1.7668 % Kappa statistic 0.9523
K&B Relative Info Score 24660.0925 %
K&B Information Score 242.8851 bits 0.8583 bits/instance Class complexity | order 0 256.4813 bits 0.9063 bits/instance Class complexity | scheme 23.3795 bits 0.0826 bits/instance Complexity improvement (Sf) 233.1018 bits 0.8237 bits/instance Mean absolute error 0.0251
Root mean squared error 0.1212 Relative absolute error 5.4184 % Root relative squared error 25.9732 % Total Number of Instances 283
=== Confusion Matrix ===
a b <-- classified as 211 4 | a = 2
1 67 | b = 4
3.3.1 Results for training data: J48 decision tree (implementation of C4.5)
=== Run information ===
Scheme: weka.classifiers.trees.j48.J48 -C 0.25 -M 2 Relation: breast_training
Instances: 400 Attributes: 10
Test mode: evaluate on training data
=== Classifier model (full training set) ===
J48 pruned tree ---
a3 <= 2
| a7 <= 3: 2 (194.0/1.0)
| a7 > 3
| | a1 <= 4: 2 (7.0)
| | a1 > 4: 4 (6.0/1.0) a3 > 2
| a6 <= 2
| | a5 <= 4: 2 (20.0/1.0)
| | a5 > 4: 4 (12.0)
| a6 > 2: 4 (161.0/9.0) Number of Leaves : 6 Size of the tree : 11
Time taken to build model: 0.02 seconds
=== Evaluation on training set ===
=== Summary ===
Correctly Classified Instances 388 97 % Incorrectly Classified Instances 12 3 % Kappa statistic 0.9391
K&B Relative Info Score 35927.8586 %
K&B Information Score 353.8649 bits 0.8847 bits/instance Class complexity | order 0 393.9122 bits 0.9848 bits/instance Class complexity | scheme 68.7303 bits 0.1718 bits/instance Complexity improvement (Sf) 325.1819 bits 0.813 bits/instance Mean absolute error 0.0564
Root mean squared error 0.1679 Relative absolute error 11.516 % Root relative squared error 33.937 % Total Number of Instances 400
=== Confusion Matrix ===
a b <-- classified as 219 10 | a = 2
2 169 | b = 4
3.3.2 Results for test data: J48 decision tree (implementation of C4.5)
=== Run information ===
Scheme: weka.classifiers.trees.j48.J48 -C 0.25 -M 2 Relation: breast_training
Instances: 400 Attributes: 10
Test mode: user supplied test set: 283 instances
=== Classifier model (full training set) ===
J48 pruned tree --- a3 <= 2
| a7 <= 3: 2 (194.0/1.0)
| a7 > 3
| | a1 <= 4: 2 (7.0)
| | a1 > 4: 4 (6.0/1.0) a3 > 2
| a6 <= 2
| | a5 <= 4: 2 (20.0/1.0)
| | a5 > 4: 4 (12.0)
| a6 > 2: 4 (161.0/9.0) Number of Leaves : 6 Size of the tree : 11
Time taken to build model: 0.02 seconds
=== Evaluation on test set ===
=== Summary ===
Correctly Classified Instances 275 97.1731 % Incorrectly Classified Instances 8 2.8269 % Kappa statistic 0.9218
K&B Relative Info Score 23633.2044 %
K&B Information Score 232.7709 bits 0.8225 bits/instance Class complexity | order 0 256.4813 bits 0.9063 bits/instance Class complexity | scheme 1115.1466 bits 3.9404 bits/instance Complexity improvement (Sf) -858.6653 bits -3.0342 bits/instance Mean absolute error 0.0461
Root mean squared error 0.1646
Relative absolute error 9.9595 % Root relative squared error 35.2651 % Total Number of Instances 283
=== Confusion Matrix ===
a b <-- classified as 212 3 | a = 2
5 63 | b = 4
3.4.1 Results for training data: SMO (Support Vector Machine)
=== Run information ===
Scheme: weka.classifiers.functions.supportVector.SMO -C 1.0 -E 1.0 -G 0.01 -A 1000003 -T 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1
Relation: breast_training Instances: 400
Attributes: 10
Test mode: evaluate on training data
=== Classifier model (full training set) ===
SMO
Classifier for classes: 2, 4 BinarySMO
Machine linear: showing attribute weights, not support vectors.
1.4364 * (normalized) a1 + 0.4204 * (normalized) a2 + 1.0846 * (normalized) a3 + 1.0712 * (normalized) a4 + 0.9297 * (normalized) a5 + 1.409 * (normalized) a6 + 1.0571 * (normalized) a7 + 0.6458 * (normalized) a8 + 1.1078 * (normalized) a9 - 2.3339
Number of kernel evaluations: 7446 Time taken to build model: 0.66 seconds
=== Evaluation on training set ===
=== Summary ===
Correctly Classified Instances 387 96.75 % Incorrectly Classified Instances 13 3.25 % Kappa statistic 0.9338
K&B Relative Info Score 37314.0252 %
K&B Information Score 367.5177 bits 0.9188 bits/instance Class complexity | order 0 393.9122 bits 0.9848 bits/instance Class complexity | scheme 13962 bits 34.905 bits/instance Complexity improvement (Sf) -13568.0878 bits -33.9202 bits/instance Mean absolute error 0.0325
Root mean squared error 0.1803 Relative absolute error 6.6389 % Root relative squared error 36.4406 % Total Number of Instances 400
=== Confusion Matrix ===
a b <-- classified as 220 9 | a = 2
4 167 | b = 4
3.4.2 Results for test data: SMO (Support Vector Machine)
=== Run information ===
Scheme: weka.classifiers.functions.supportVector.SMO -C 1.0 -E 1.0 -G 0.01 -A 1000003 -T 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1
Relation: breast_training Instances: 400
Attributes: 10
Test mode: user supplied test set: 283 instances
=== Classifier model (full training set) ===
SMO
Classifier for classes: 2, 4 BinarySMO
Machine linear: showing attribute weights, not support vectors.
1.4364 * (normalized) a1
+ 0.4204 * (normalized) a2 + 1.0846 * (normalized) a3 + 1.0712 * (normalized) a4 + 0.9297 * (normalized) a5 + 1.409 * (normalized) a6 + 1.0571 * (normalized) a7 + 0.6458 * (normalized) a8 + 1.1078 * (normalized) a9 - 2.3339
Number of kernel evaluations: 7446 Time taken to build model: 0.33 seconds
=== Evaluation on test set ===
=== Summary ===
Correctly Classified Instances 279 98.5866 % Incorrectly Classified Instances 4 1.4134 % Kappa statistic 0.9617
K&B Relative Info Score 25215.9493 %
K&B Information Score 248.3599 bits 0.8776 bits/instance Class complexity | order 0 256.4813 bits 0.9063 bits/instance Class complexity | scheme 4296 bits 15.1802 bits/instance Complexity improvement (Sf) -4039.5187 bits -14.2739 bits/instance Mean absolute error 0.0141
Root mean squared error 0.1189 Relative absolute error 3.0559 % Root relative squared error 25.4786 % Total Number of Instances 283
=== Confusion Matrix ===
a b <-- classified as 212 3 | a = 2
1 67 | b = 4
3.5.1 Results for training data: JRip (implementation of the RIPPER rule learner)
=== Run information ===
Scheme: weka.classifiers.rules.JRip -F 3 -N 2.0 -O 2 -S 1 Relation: breast_training
Instances: 400 Attributes: 10
Test mode: evaluate on training data
=== Classifier model (full training set) ===
JRIP rules:
===========
(a2 >= 3) and (a2 >= 5) => class=4 (116.0/2.0) (a6 >= 3) and (a3 >= 3) => class=4 (55.0/7.0) (a1 >= 6) and (a8 >= 4) => class=4 (5.0/0.0) (a2 >= 4) => class=4 (4.0/1.0)
=> class=2 (220.0/1.0) Number of Rules : 5
Time taken to build model: 0.05 seconds
=== Evaluation on training set ===
=== Summary ===
Correctly Classified Instances 389 97.25 % Incorrectly Classified Instances 11 2.75 % Kappa statistic 0.9442
K&B Relative Info Score 36393.688 %
K&B Information Score 358.453 bits 0.8961 bits/instance Class complexity | order 0 393.9122 bits 0.9848 bits/instance Class complexity | scheme 57.2873 bits 0.1432 bits/instance Complexity improvement (Sf) 336.6249 bits 0.8416 bits/instance Mean absolute error 0.0491
Root mean squared error 0.1567 Relative absolute error 10.0299 % Root relative squared error 31.6717 % Total Number of Instances 400
=== Confusion Matrix ===
a b <-- classified as 219 10 | a = 2
1 170 | b = 4
3.5.2 Results for test data: JRip (implementation of the RIPPER rule learner)
=== Run information ===
Scheme: weka.classifiers.rules.JRip -F 3 -N 2.0 -O 2 -S 1 Relation: breast_training
Instances: 400
Attributes: 10
Test mode: user supplied test set: 283 instances
=== Classifier model (full training set) ===
JRIP rules:
===========
(a2 >= 3) and (a2 >= 5) => class=4 (116.0/2.0) (a6 >= 3) and (a3 >= 3) => class=4 (55.0/7.0) (a1 >= 6) and (a8 >= 4) => class=4 (5.0/0.0) (a2 >= 4) => class=4 (4.0/1.0)
=> class=2 (220.0/1.0) Number of Rules : 5
Time taken to build model: 0.08 seconds
=== Evaluation on test set ===
=== Summary ===
Correctly Classified Instances 276 97.5265 % Incorrectly Classified Instances 7 2.4735 % Kappa statistic 0.9326
K&B Relative Info Score 24255.9546 %
K&B Information Score 238.9046 bits 0.8442 bits/instance Class complexity | order 0 256.4813 bits 0.9063 bits/instance Class complexity | scheme 40.6116 bits 0.1435 bits/instance Complexity improvement (Sf) 215.8697 bits 0.7628 bits/instance Mean absolute error 0.0329
Root mean squared error 0.1457 Relative absolute error 7.116 % Root relative squared error 31.2218 % Total Number of Instances 283
=== Confusion Matrix ===
a b <-- classified as 211 4 | a = 2
3 65 | b = 4
4. Summary
This section presents summary tables for scheme accuracy and running times.
Table 4.1: Accuracy and running time summary table for 10 fold cross validation
Model Running time 10 fold cross val.
Naive Bayes 0.08 seconds 96.4861%
BP neural network 32.06 seconds 95.1684%
J48 decision tree (C4.5) 0.08 seconds 95.7540%
SMO (support vector machine) 0.53 seconds 97.0717%
JRip (RIPPER rule learner) 0.19 seconds 95.6076%
Table 4.2: Accuracy for training and test data between different models
Model Training data Test data
Naive Bayes 95.50% 97.8799%
BP neural network 98.75% 98.2332%
J48 decision tree (C4.5) 97.00% 97.1731%
SMO (support vector machine) 96.75% 98.5866%
JRip (RIPPER rule learner) 97.25% 97.5265%
Table 4.2: A comparison with the others papers
Method Testing Error
WEKA 3.3.6
Naive Bayes 97.8799%
BP neural network 98.2332%
J48 decision tree (C4.5) 97.1731%
SMO (support vector machine) 98.5866%
JRip (RIPPER rule learner) 97.5265%
Fogel et al. [1] 98.1000%
Abbass et. al. [2] 97.5000%
Abbass H. A. [3] 98.1000%
5. Reference
1. Fogel DB, Wasson EC, Boughton EM. Evolving neural networks for detecting breast cancer. Cancer lett 1995; 96(1): 49-53.
2. Abbass HA, Towaey M, Finn GD. C-net: a method for generating non-deterministic and dynamic multivariate decision trees. Knowledge Inf. Syst. 2001; 3:184-97.
3. Abbass HA. An evolutionary artificial neural networks approach for breast cancer diagnosis. Artificial Intelligence in Medicine 2002; 25, 265-281.