• 沒有找到結果。

13log17log 21

N/A
N/A
Protected

Academic year: 2022

Share "13log17log 21"

Copied!
5
0
0

加載中.... (立即查看全文)

全文

(1)

高雄市明誠中學 高一數學平時測驗 日期:93.03.04 班級

圍 1-3 對數+Ans

座號

姓 名 一. 單選題(每題 10 分)

1. 設xR,使log2x+1(2 + 5x − 3x2)有意義的x所成的集合為 (A){x| −

2

1< x < 2} (B){x| − 3

1< x < 2} (C){x| 0 < x < 2} (D){x| − 3

1< x < 2 且x ≠ 0}

(E){x| − 2

1< x < 2 且x ≠ 0}

答案:(D) 解析:

3 2 0 1

) 2 )(

1 3 ( 0

2 5 3 0

3 5 2

0 1

1 2

2 0 1

1 2

2

2 > ⇒ − − < ⇒ + − < ⇒ − < <

− +

≠ +

>

>

+

x x

x x

x x

x

x x

x x

⎪⎩

⎪⎨

∴ − 3

1< x < 2 且 x ≠ 0,故選(D)

2. log0.1 log0.2 log0.5

5 2

1 之值 =(A) − 2 (B) − 1 (C) 0 (D) 1 (E) 2 答案:(C)

解析:原式 = log0.1(log0.2( 5

1

2 12

log )) = log0.1( 5 log 1

5

1 ) = log0.11 = 0,故選(C) 二、複選題(每題 10 分)

3.下列各x值何者大於 1?

(A) logx10 10= 2

3 (B) x = log

2

132 (C) 10x =3100 (D) log

2

1x = − 2 (E) ( 2 1)x = 2 答案:(A)(D)

解析:

(A) logx10 10= 2

3 ⇒ 10 10 = x2

3

⇒ x = 10 (B) x = log

2

132 = log 221

5 = − 5

(C) 10x =3100= 103

2

⇒ x = 3

2 (D) log

2

1x = − 2 ⇒ x = ( 2

1)−2 = 22 = 4

(E) ( 2

1)x = (2−1)x = 2 ⇒ x = − 1 4. 下列式子哪些是正確的?

(A) log77 = 1 (B) log32 + log34 = log36 (C) log517 − log513 =

13 log

17 log

5

5

(D) log25.log27 = log235 (E) log49 = log 2 3

(2)

答案:(A)(E) 解析:

(A) 對數性質 (B) log32 + log34 = log38 ≠ log36 (C) log517 − log513 = log5

13 17 ,

13 log

17 log

5

5 = log1317 ∴ 二式不相等 (D) log235 = log2(5.7) = log25 + log27 ≠ log25.log27

(E) log49 = log 322

2 = 2

2log23 = log23,log 2 3= log

2 1

2

32

1

= 2 1 2 1

log23 = log23 ∴ 二式相等 5. 若a > 0,b > 0,下列的對數式中哪些恆成立?

(A) (loga)(logb) = log(a + b) (B) − loga = log a

1(C) log b

a= loga − logb (D) (loga)2 = 2loga

答案:(B)(C)

解析:(A) (loga)(logb) ≠ log(a + b) (B) − loga = loga−1 = log a 1

(C) log b

a= loga − logb (D) (loga)2 ≠ 2loga = loga 2 三、填充題(每題 10 分)

1. log23 = a,log37 = b,試以a,b表示log4256 = 。

答案: a ab

ab + +

+ 1

3

解析:

log4256 =

42 log

56 log

3

3 =

7 log 3 log 2 log

7 log 8 log

3 3

3

3 3

+ +

+ =

a b a b

+ +

+ 1 1

3

= a ab ab + +

+ 1

3

2. 化簡log23.log764.log35.log549 之值 = 。 答案:12

解析:

log23.log764.log35.log549 = log23.log35.(2log57).(6log72)

= 12.log23.log35.log57.log72 = log22 = 12 3. 求log2

16

1 + log5125 + log 31 + 2log23之值 = 。 答案:2

解析:原式 = 4log2

2

1 + 3 + 0 + 3 = − 4 + 3 + 0 + 3 = 2 4.求(log94).(log25 3 ).(log 25) = 。 答案:2

1

(3)

解析:原式 = ( 2

2log32)(

2 2 1

log53)(

2 1

1 log25) = 1.

4

1.2(log32.log25.log53) = 2 1

5. 解(

3 2)x = (

2

3)2x−3,x = 。 答案:1

解析:

兩邊取對數,得 xlog 3

2= (2x − 3)log 2 3

⇒ (2log 2 3− log

3

2)x = 3log 2

3 ⇒ (3log 2

3) x = 3log 2

3 ⇒ x = 1

6. (log38 + log9

4

1)(log43 + log29) = 。 答案:5

解析:

原式 = ( 3 log

2 log

3 −

3 log 2

2 log

2 )(

2 log 2

3 log +

2 log

3 log

2 ) = (2.

3 log

2 log )(

2 5.

2 log

3 log ) = 5

7. 方程式log7(7x + 49) = 2

x+ 1 + log72 的解為 。 答案:2

解析:

log7(7x + 49) = 2

x+ 1 + log72 = log772

x

+ log77 + log72 ⇒ log7(7x + 49) = log7(14.72

x

)

⇒ 7x + 49 = 14.72

x

⇒ (72

x

)2 − 14.72

x

+ 49 = 0

⇒ (72

x

− 7)2 = 0 ⇒ 72

x

= 7 ⇒ 2

x= 1 ⇒ x = 2 8. 設18a =2,試以 表示a log32 = 。

答案: a

a

− 1

2

解析:

取 log ⇒ 2

18a = alog18=log2 ⇒ a(2log3+log2)=log2

⇒ 2a. 1

2 log

3

log + a= ⇒

a a 2 3 1

log2 = − ∴

a a

= − 1 2 2 log3

9. 化簡求值:

(1) log10

9

25− log105 + log10

35

27− log10

70

3 = 。 (2) (log23 + log1681)(log38 − log92) = 。 答案:(1) 1 (2) 5

解析:

(1)原式 = log10 ( 9 25÷ 5 ×

35 27÷

70

3 ) = log10 ( 9 25×

5 1×

35 27×

3

70) = log10 10 = 1

(4)

(2)原式 = (log23 + 4

4log23)(3 log32 − 2

1log32) = 2 log23 × 2

5log32 = 5 10. 方程式log3(x2 − 13) − log3(x − 3) = 2 之解為 。

答案:7 解析:

log3(x2 − 13) − log3(x − 3) = 2 ⇒ log3

3

2 13

x

x = log3 32 = 9 ⇒

3

2 13

x

x = 32 = 9

⇒x2 − 9x + 14 = 0 ⇒ (x − 7)(x − 2) = 0

⇒ x >

⎩⎨

>

>

− 0 3

0

2 13 x

x 13

∴ x = 7 11.對數定義:

(1)設log

2

3a = 4,則a = 。 (2)設logb 9 3= 5,則b = 。 答案:(1)

16

81 (2) 3

12.求log8( 2+ 3 − 2− 3 ) = 。 答案:6

1

解析:

3

2+ − 2− 3= 2

1 ( 4+2 3− 4−2 3) = 2

1 [( 3+ 1) − ( 3 − 1)] = 2

∴ log8( 2+ 3 − 2− 3) = log23 2= 3 2 1

log22 = 6 1

13.設 4logx − 3.xlog2 − 4 = 0,則x = 。 答案:100

解析:

(2logx)2 − 3.2logx − 4 = 0 ⇒ (2logx − 4)(2logx + 1) < 0 ⇒ 2logx = 4 = 22 ⇒ logx = 2

∴ x = 100 14.化簡log

32 81+ 3log

3 5+ log

9

1+ log768 之值為 。 答案:3

解析:

原式 = log 32

81+ log ( 3

5)3 + log 9

1+ log 768 = log(

32 81×

27 125×

9

1×768) = log 1000 = 3 15.解方程式log6x + log6(x − 1) = 1,得x = 。

答案:3 解析:

log6x + log6(x − 1) = 1 ⇒log6[x(x − 1)] = log66 ⇒ x2 − x = 6

⇒ x2 − x − 6 = 0 ⇒ (x − 3)(x + 2) = 0

(5)

⇒ x > 1, ⇒ x = 3 或 − 2(不合)

⎩⎨

>

>

0 1

0 x

x   

16.方程式log

2

1(x + 3) − 2log

2

1(x − 1) = 1 之解為 。 答案:x = 5

解析:

log

2

1(x + 3) − 2log

2

1(x − 1) = 1 ⇒ log

2

1 2

) 1 (

3

− + x

x = log

2 1 2

1

2

) 1 (

3

− + x

x =

2

1 ⇒ x2 − 2x + 1 = 2x + 6 ⇒ x2 − 4x − 5 = 0 ⇒ x = 5 或 − 1

原式有意義 ⇒ ⇒ x > 1;得x = 5

⎩⎨

>

>

+ 0 1

0 3 x x

17.x的方程式x(log2x)a= 32 有一根為 2 1,則

(1) a = 。 (2)此方程式的另一根為 。 答案:(1) 4 (2) 32

解析:

(1)∵

2

1為x(log2x)a= 32 之一根,代入 ⇒ 2)a

(log21

2)

(1 = 32

⇒ )

2

(1 −1−a = 25 ⇒ − 1 − a = − 5 ⇒ a = 4

(2) = 32 ⇒ = log 32 ⇒ (log x − 4)(log x) = 5

⇒ (log x)

4 ) (log2x

x log2 x(log2x)4 2 2 2

2 2 − 4log x − 5 = 0 ⇒ (log x − 5)(log x + 1) = 0

⇒ log x = 5,− 1 ⇒ x = 2

2 2 2

2 5,2−1 ⇒ x =

2

1,32 ∴ 另一根為 32 18.設

α

β

為(log3x)(log4x) = 1 的兩根,則

α

β

之積為 。 答案:12

1

解析:

∵ (log3x)(log4x) = 1 的二根為

α

β

⇒ (log x + log3)(log x + log4) − 1 = 0 的二根為

α

β

⇒ (log x)2 + (log3 + log4)(log x) + (log3)(log4) − 1 = 0 的二根為

α

β

設y = log x⇒ y2 + (log12)y + (log3)(log4) − 1 = 0 的二根為log

α

,log

β

其二根和log

α

+ log

β

= − log12 ⇒ log

αβ

= log

12

1 ⇒

αβ

= 12

1

參考文獻

相關文件

(複選)設A,B∈R,下列敘述何者正確?.[r]

[r]

Existence of Positive Solutions of a Singular Initial Problem for a Nonlinear System of Differential Equations. BY JOSEF DIBLI'K AND MIROSLAVA

[r]

Let’s see how to code this in R using the previous vector x of data with our test statistic again being the coefficient of variation (and hence our function CV previously defined)..

The Seed project, REEL to REAL (R2R): Learning English and Developing 21st Century Skills through Film-making in Key Stage 2, aims to explore ways to use film-making as a means

Minutes of the Senate/Academic Board/highest academic authority of the home institution, if there has been change to the appointment criteria of the home and/or Hong Kong

In this section, we define the so-called SOC-r-convex functions which is viewed as the natural extension of r-convex functions to the setting associated with second- order