• 沒有找到結果。

x2sin x, ∆x = π − 0 8 = π 8, (a) Use the Midpoint Rule, M8 = Z π 0 x2sin x dx ≈ π 8  f ( π 16

N/A
N/A
Protected

Academic year: 2022

Share "x2sin x, ∆x = π − 0 8 = π 8, (a) Use the Midpoint Rule, M8 = Z π 0 x2sin x dx ≈ π 8  f ( π 16"

Copied!
4
0
0

加載中.... (立即查看全文)

全文

(1)

Chapter 7.7(Solution) 5. sol.

f (x) = x2sin x, ∆x = π − 0

8 = π

8, (a) Use the Midpoint Rule,

M8 = Z π

0

x2sin x dx ≈ π 8

 f ( π

16) + f (3π

16) + · · · f (15π 16 )



≈ 5.9329566

(b) Use the Simpson’s Rule, S8 = Z π

0

x2sin x dx

≈ 1 3·π

8



f (0) + 4f (π

8) + 2f (2π

8 ) + 4f (3π

8 ) + 2f (4π

8 ) + 4f (5π

8 ) + 2f (6π

8 ) + 4f (7π

8 ) + f (π)



≈ 5.8692468 (c) Actual value:

Z π

0

x2sin x dx = −x2cos x

π

0 + 2 Z π

0

x cos x dx

= π2+ 2



x sin x

π

0 − Z π

0

sin x dx



= π2+ 2h 0 −

− cos x

π

0

i

= π2− 4 ≈ 5.8696044

Error: EM = (π2− 4) − M8 ≈ −0.063352199; ES = (π2− 4) − S8 ≈ 0.000357601.

23. sol.

(a) f (x) = ecos x, f(x) = ecos x(− sin x), f′′(x) = ecos x(sin2x − cos x). From the graph of f′′(x) (See Figure 1), we find that the maximum value of |f′′(x)| occurs at the endpoint of the interval [0, 2π]. Because of f′′(0) = −e, we choose K = e and

|f′′(x)| ≤ K.

Figure 1: 7.7 Ex.23(a)

(b) ∆x = 2π − 0 10 = π

5, I = Z

0

f (x) dx,

M10= ∆x

 f (π

10) + f (3π

10) + · · · + f (19π 10 )



≈ 7.954926518

1

(2)

(c) |EM| ≤ K(b − a)3

24n2 = e · (2π − 0)3

24 · 102 ≈ 0.280945995 (d) I =

Z π

0

x2sin x dx ≈ 7.954926521. (using software like CAS or Maple or ...) (e) The actual error is about 3 × 10−9; the estimate error in (c) is about 0.28.

So the actual error is much smaller.

(f) f′′′(x) = ecos x(− sin3x + 3 sin x cos x + sin x), and f(4)(x) = ecos x(sin4x − 6 sin2x cos x − 7 sin2x + cos x + 3). From the graph of f(4)(x) (See Figure 2), we find that the maximum value of |f(4)(x)| occurs at the endpoint of the interval [0, 2π].

Because of f(4)(0) = 4e, we choose K = 4e and |f(4)(x)| ≤ K.

Figure 2: 7.7 Ex.23(f)

(g) ∆x = 2π − 0 10 = π

5, I = Z

0

f (x) dx,

S10= ∆x 3



f (0) + 4f (π

5) + 2f (2π

5 ) + · · · + 4f (9π

5 ) + f (2π)



≈ 7.953789422

(h) |ES| ≤ K(b − a)5

180n4 = 4e · (2π − 0)5

180 · 104 ≈ 0.059153618

(i) The actual error is about 7.954926521 − 7.953789422 ≈ 0.001137099; the estimate error in (h) is about 0.059153618. So the actual error is smaller.

(j) We require |ES| = K(b − a)5

180n4 ≤ 0.0001 ⇒ n4 ≥ K(b − a)5

180 · 0.0001 = 4e(2π)5 180 · 0.0001 ≈ 5915361.766 ⇒ n4 ≥ 5915362 ⇒ n ≥ 49.3. So we require n ≥ 50 to guarantee that

|ES| ≤ 0.0001.

45. sol.

We divide the interval [a, b] into n intervals: [xi−1, xi], for i = 1, 2, · · · , n when we use trapezoidal rule and midpoint rule, so we only consider one interval as shown in Figure 3. Let A, B, and E be xi−1, xi, and xi; the red curve represents f (x) (f′′(x) <

2

(3)

Figure 3: 7.7 Ex.45 0). The actual value ofRb

af (x) dx is the area between the red curve and AB. Tn is the area of trapezoid AQRB, so Tn < Rb

a f (x) dx. Mn is the area of the rectangle with length AB and width EP , and it equals the area of the trapezoid ACDB, where CD is the tangent line of f (x) at point P . Therefore, Mn >Rb

af (x) dx.

46. sol.

Let f (x) be a polynomial of degree < 3, so assume f (x) = Ax3+ Bx2+ Cx + D.

Consider that we divide [a, b] into two subintervals (n = 2), if we prove that the estimate is exact for n = 2, then for the general case (n is a large even number), the estimate is the sum of n/2 exact values, so it is a exact value.

Assume that x0 = −h, x1 = 0, and x2 = h, the Simpson’s rule gives the approx- imation value:

Z h

−h

f (x) dx ≈ h

3[f (−h) + 4f (0) + f (h)]

= h

3(−Ah3+ Bh2− Ch + D) + 4D + (Ah3 + Bh2+ Ch + D)

= 2

3Bh3+ 2Dh.

The actual value of the integral is:

Z h

−h

f (x) dx = Z h

−h

(Ax3+ Bx2+ Cx + D) dx

= 1

4Ax4+1

3Bx3+ 1

2x2 + Dx

h

−h

= 2

3Bh3+ 2Dh.

47. sol.

Suppose we divide [a, b] into n subintervals with endpoints x0, x1, · · · xn (∆x = b − a

n ), and xi = 1

2(xi−1+xi) is the midpoint of [xi−1, xi] for i = 1, · · · , n. Therefore,

3

(4)

Mn= ∆x ·

n

X

i=1

f (xi),

Tn = 1 2 · ∆x ·

"

f (x0) + 2

n−1

X

i=1

f (xi) + f (xn)

# ,

T2n = 1

2 · ∆x 2

"

f (x0) + 2

n−1

X

i=1

f (xi) + 2

n

X

i=1

f (xi) + f (xn)

#

Then, 1

2[Tn+ Mn] = T2n. 48. sol.

Suppose we divide [a, b] into n subintervals with endpoints x0, x1, · · · xn (∆x = b − a

n ), and xi = 1

2(xi−1+xi) is the midpoint of [xi−1, xi] for i = 1, · · · , n. Therefore, Mn= ∆x ·

n

X

i=1

f (xi),

Tn = 1 2 · ∆x ·

"

f (x0) + 2

n−1

X

i=1

f (xi) + f (xn)

# , Then,

1

3Tn+ 2 3Mn

= 1

3[Tn+ 2Mn]

= 1 3

"

1

2· ∆x ·f (x0) + 2

n−1

X

i=1

f (xi) + f (xn)

!

+ 2 ∆x ·

n

X

i=1

f (xi)

!#

= 1

3 · ∆x 2

"

f (x0) + 2

n−1

X

i=1

f (xi) + f (xn) + 4

n

X

i=1

f (xi)

#

= S2n

4

參考文獻

相關文件

it so that the corner point touch the upper edge as shown in the figure.. Find x such that the area A

Remark: Compare with Exercise 2.19, and the set of all intervals of positive length is uncountable is clear by considering {(0, x) : 0 &lt; x &lt;

Now there are

(1) Determine whether the series converges or diverges.. Write c if it is convergent and d if it

Set up and evaluate the definite integral that yields the total loss of value of the machine over the first 3 years

[r]

2.Estimate the value of the derivative at assigned points of x by drawing the tangent at the point (x, f (x))and estimating its slope.. 3.(a) The slope at 0 is a

1 pt for the