• 沒有找到結果。

壓電式微致動閥之設計與製作 吳東益、鄭江河

N/A
N/A
Protected

Academic year: 2022

Share "壓電式微致動閥之設計與製作 吳東益、鄭江河"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

壓電式微致動閥之設計與製作 吳東益、鄭江河

E-mail: 9806442@mail.dyu.edu.tw

摘 要

本文提出設計、實驗及製作出主動式微閥門應用在微幫浦。致動器是選用壓電材料,當驅動壓電致動器產生單軸向位移後 可使微閥門達到開啟或關閉的動作。本微閥門結構設計上有兩種樣式,正常狀態下微閥門關閉或開啟。工作流體採用去離 子水(De Ion Water),透過壓電式微幫浦輸出流率11.29~22.23 ml/min及6~12 kPa的水壓,當搭配正常狀態下微閥門關閉的 結構,給予致動器電壓從0 V到100 V,流率為0.02~2.13 ml/min,每分鐘最大流量誤差為1.4~10%;當搭配正常狀態下微 閥門開啟的結構,流率為0.01~3.19 ml/min,每分鐘最大流量差誤為0.9~10%。

關鍵詞 : 主動式微閥門、壓電致動器、流率、微流量

目錄

第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3文獻回顧 2

第二章 壓電式微致動閥之設計與分析 9 2.1壓電式微致動閥之設計 9

2.2模擬分析結構元件規格設定 11

2.3相同PZT搭配不同厚度轉接板之位移分析 13 2.4不同厚度轉接板實際測試與模擬分析比較 14 第三章 微閥門結構元件製作 16

3.1黃光製程 16 3.2蝕刻製程 17

3.3蝕刻測試與速率探討 19 3.4 PDMS製作流程 21 3.5壓電致動器之製作 22 3.6壓電式微致動閥組裝 24 第四章 實驗量測與探討 25 4.1設備架設說明與前置量測 25 4.2壓電式微致動閥流量量測 30

4.2.1不同入水壓力下NC閥與NO閥的流量量測 30 4.2.2 NC閥與NO閥在長時間做動下的流量量測 34 4.3入水壓經過NC閥與NO閥後的壓力量測 34 第五章 結論 39

參考文獻 40 參考文獻

[1]I. Chakraborty, W.C Tang, D.P. Bame and T.K Tang, “MEMS micro-valve for space applications,” Sensors and Actuators 83 (2000) 188 –193.

[2]T. Rogge, Z. Rummler and W.K. Schomburg, “Polymer micro valve with a hydraulic piezo-drive fabricated by the AMANDA process,”

Sensors and Actuators A 110 (2004) 206–212.

[3]A. Doll, M. Wischke, H.-J.Schrag, A. Geipel, F. Goldschmidtboeing and P. Woias, “Characterization of active silicon microvalves with piezoelectric membrane actuators,” Microelectronic Engineering 84 (2007) 1202–1206.

[4]I Fazal and M C Elwenspoek, “Design and analysis of a high pressure piezoelectric actuated microvalve,” J. Micromech. Microeng. 17 (2007) 2366–2379.

(2)

[5]M. Sobocinski, J. Juuti, H. Jantunen and L. Golonka, “Piezoelectric unimorph valve assembled on an LTCC substrate,” Sensors and Actuators: A Physical (2008), doi:10.1016/j.sna.2008.11.025.

[6]Levent Yobas, Michael A. Huff, Frederick J. Lisy, and Dominique M. Durand, “A novel bulk-micromachined electrostatic microvalve with a curved-compliant structure applicable for a pneumatic tactile display,” Journal of microelectromechanical systems, VOL. 10, NO. 2, JUNE 2001.

[7]H Kahny, M A Huffz and A H Heuery, “The TiNi shape-memory alloy and its applications for MEMS,” J. Micromech. Microeng. 8 (1998) 213–221.

[8]Barth, P.W., Proceedings of Transducers ’95, the 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX;

Stockholm, Sweden, June 1995, pp. 276–277.

[9]Mircea Capanu, James G. Boyd, IV, and Peter J. Hesketh, “Design, Fabrication, and Testing of a Bistable Electromagnetically Actuated Microvalve,” Journal of microelectromechanical systems, VOL. 9, NO. 2, JUNE 2000.

[10]P.J. Hesketh, J.S. Bintoro, R. Luharuka, “Microvalve for Fuel Cells and Miniature Gas Chromatographic System,” School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 2004.

[11]P Nageswara Rao and Deepak Kunzru, “Fabrication of microchannels on stainless steel by wet chemical etching,” J. Micromech. Microeng.

17 (2007) N99–N106.

[12]Sudipta Chatterjee, Motoki Ujihara, Dong Gun Lee, Jerry Chen, Stanley Lei and Greg P Carman, “Spray etching 2 μm features in 304 stainless steel,” J. Micromech. Microeng. 16 (2006) 2585–2592.

參考文獻

相關文件

Highest levels of memory hierarchy Fast: level 1 typically 1 cycle access time With luck, supplies most data. Cache

In this paper, we provide new decidability and undecidability results for classes of linear hybrid systems, and we show that some algorithms for the analysis of timed automata can

〝 Exact methods for determining the kinematics of a Stewart platform using additional displacement sensors,〞Journal of Robotic Systems,Vol.

We have presented a numerical model for multiphase com- pressible flows involving the liquid and vapor phases of one species and one or more inert gaseous phases, extending the

[r]

This paper presents (i) a review of item selection algorithms from Robbins–Monro to Fred Lord; (ii) the establishment of a large sample foundation for Fred Lord’s maximum

In this paper, we develop a novel volumetric stretch energy minimization algorithm for volume-preserving parameterizations of simply connected 3-manifolds with a single boundary

We have also discussed the quadratic Jacobi–Davidson method combined with a nonequivalence deflation technique for slightly damped gyroscopic systems based on a computation of