• 沒有找到結果。

楊中勝、吳建一, 李弘彬

N/A
N/A
Protected

Academic year: 2022

Share "楊中勝、吳建一, 李弘彬"

Copied!
4
0
0

加載中.... (立即查看全文)

全文

(1)

LED光源種類對光合細菌在水中氨氮去除之影響 = Effects of LED Light Sources on Ammonia Removal from Water by Photosynthetic

楊中勝、吳建一, 李弘彬

E-mail: 386685@mail.dyu.edu.tw

摘 要

隨著光電子技術的快速發展,自1980年中期以來已經顯著提高了發光二極體(LED燈)的亮度和發光效率。發光二極 體(LEDs) 因為壽命較長且能量消耗就低,因此提供了光合生物反應器中替代光源,而且LED燈具有特定的狹窄範圍之光波 長,因此,亦可提供光合細菌所需的特定波長光源。本研究探討了五種光源對光合細菌的生長和NH4+-N去除的影響。光 源分別為:白熾燈(IL)、發光二極管(LED)之白色(LW)、紅色(LR)、藍色(LB)、綠色(LG)。以黑暗條件作為 對照組。對於細菌生長濃度的影響,由高到低為:綠色LED燈>白色LED燈>白熾燈>紅色LED燈>藍色LED燈>黑暗。另外

,在氨氮去除效率方面,結果顯示在曝氣條件下,紅色LED燈和藍色LED燈可以促進光合細菌去除NH4+-N的效率達將 近100%。

關鍵詞 : 氨氮、硝化作用、光合細菌、發光二極管

目錄

目錄

中文摘要...iii

ABSTRACT...iv

誌謝...v

目錄...vi

圖目錄...viii

表目錄...x

第一章 緒論...1

1.1 前言...1

1.2 研究動機...2

第二章 文獻回顧...5

2.1 光合細菌簡介...5

2.2 光合細菌的應用...6

2.3 光源種類對於光合微生物之影響...8

2.4 固定化技術簡介...10

第三章 材料與方法...11

3.1 實驗材料...11

3.1.1 實驗藥品...11

3.1.2 儀器設備...12

3.2 菌株來源...13

3.3 菌種之培養基配方...13

3.4 光合細菌在不同光源中去除氨氮速率之探討...14

3.4.1 一體化支架植物燈之不同光波長LED...19

3.5 分析方法...25

3.5.1 光合細菌活菌體吸光值之分析...25

3.5.2 菌體濃度與細胞乾菌重之定量...25

3.5.3 氨氮濃度分析...27

第四章 結果討論...30

4.1 白熾燈對PU固定化PSB菌體顆粒在水中氨氮去除的影響...30

4.2 白光LED燈(LW)對PU固定化PSB菌體顆粒在水中氨氮去除的影響...35

4.3 紅色LED燈對PU固定化PSB菌體顆粒在水中氨氮去除的影響...39

(2)

4.4 藍色LED燈對PU固定化PSB菌體顆粒在水中氨氮去除的影響...43

4.5 綠色LED燈對PU固定化PSB菌體顆粒在水中氨氮去除的影響...47

4.6 不同光源對PU固定化PSB菌體顆粒在水中氨氮去除的影響...51

第五章 結論...56

參考文獻...58

圖目錄 圖1 - 1 本研究之研究架構...4

圖3 - 1 高亮度LED 20W 一體化支架植物燈–白光...15

圖3 - 2 高亮度LED 20W 一體化支架植物燈–紅光...16

圖3 - 3 高亮度LED 20W 一體化支架植物燈-藍光...17

圖3 - 4 高亮度LED 20W 一體化支架植物燈–綠光...18

圖3 - 5 白光LED燈之反應器示意圖...20

圖3 - 6 紅光LED燈之反應器示意圖...21

圖3 - 7 藍光LED燈之反應器示意圖...22

圖3 - 8 綠光LED燈之反應器示意圖...23

圖3 - 9 光合細菌菌體乾菌種檢量線...26

圖3 - 10 NH4+-N 濃度減量線...29

圖4 - 1 白熾燈條件下PU固定化PSB菌體顆粒之生長、氨氮濃度及pH變化時程圖...32

圖4 - 2 白熾燈對PU固定化PSB菌體顆粒之最大比生長速率、氨氮利用率與氨氮去除率之影響...33

圖4 - 3 白熾燈光對PU固定化PSB菌體顆粒之生長狀況及培養液之外觀顏色變化...34

圖4 - 4 白光LED燈條件下PU固定化PSB菌體顆粒之生長、氨氮濃度及pH變化時程圖...36

圖4 - 5 白光LED燈對PU固定化PSB菌體顆粒之最大比生長速率、氨氮利用率與氨氮去除率之影響...37

圖4 - 6 白光LED燈對PU固定化PSB菌體顆粒之生長狀況及培養液之外觀顏色變化...38

圖4 - 7 紅光LED燈條件下PU固定化PSB菌體顆粒之生長、氨氮濃度及pH變化時程圖...40

圖4 - 8 紅光LED燈對PU固定化PSB菌體顆粒之最大比生長速率、氨氮利用率與氨氮去除率之影響...41

圖4 - 9 紅LED燈對PU固定化PSB菌體顆粒之生長狀況及培養液之外觀顏色變化...42

圖4 - 10 藍光LED燈條件下PU固定化PSB菌體顆粒之生長、氨氮濃度及pH變化時程圖...44

圖4 - 11 藍光LED燈對PU固定化PSB菌體顆粒之最大比生長速率、氨氮利用率與氨氮去除率之影響...45

圖4 - 12 藍光LED燈對PU固定化PSB菌體顆粒之生長狀況及培養液之外觀顏色變化...46

圖4 - 13 綠光LED燈條件下PU固定化PSB菌體顆粒之生長、氨氮濃度及pH變化時程圖...48

圖4 - 14 綠光LED燈對PU固定化PSB菌體顆粒之最大比生長速率、氨氮利用率與氨氮去除率之影響...49

圖4 - 15 綠光LED燈對PU固定化PSB菌體顆粒之生長狀況及 培養液之外觀顏色變化...50

圖4 - 16 不同光源條件下PU固定化PSB菌體顆粒之生長、氨氮濃度及pH變化時程圖...53

圖4 - 17 不同光源種類對PU固定化PSB菌體顆粒之最大比生長速率、氨氮利用率與氨氮去除率之影響...54

表目錄 表3 - 1 LED燈光照度數值...24

表4 - 1 不同光源對PU固定化PSB菌體顆粒之影響...55 參考文獻

1.小林達治。1993。光合成細菌的環境保全。農山漁村文化協會。東京。2.王夢亮,王京偉,蘇小睿。2007。脫氮微生物對養殖水體有 機氮去除作用的研究。水處理技術 33(6): 45-52。3.王毅。2009。光合細菌產氫基質代謝實驗研究。河南農業大學。中國。4.周更生

,2009。發光二極體。科學發展。435 : 5頁5.星野八洲雄,1984。分離,培養???同定法。北村博、森田茂廣、山下仁平編。光合成細菌

。學會出版。18-33。6.張雅琪。2008。嗜鹽菌Haloferax mediterranei 生產類胡蘿蔔素之最適化探討。大同大學。台北。7.郭甫旭。2009

。不同光源對光合細菌生長及類胡蘿蔔素含量的影響。國立海洋大學。基隆。8.陳展添。1993。活性污泥法添加及未添加光合菌處理經 厭氣處理後之養豬場廢水。國立成功大學。台南。9.陶思源,李娜,趙新剛,張陽,陳強。2010。光合細菌PSB-B4的分離與培養條件優 化研究。瀋陽師範大學學報(自然科學版) 28(1): 90-93。10.曾信榮,許千樹。2010。發光二極體。科學發展 451期11.曾義雄,1985。細菌 代謝。藝軒出版社。300-306頁12.鄭偉凡。2011。不同光源對三種光合細菌Rhodopseudomonas palustris, Rhodobacter sphaeroides,

(3)

Rhodobacter capsulatus 生長及類胡蘿蔔素含量與組成之影響。國立海洋大學。基隆。13.潘錫明,2009。認識發光二極體。科學發展

。435:6-11頁14.Anderson, S. Mctntosh, L. 1991 Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. Journal of Bacteriology. 173, 2761-2767.15.Asano H., Myoga H., Asano M. and Toyao M. 1992. Nitrification treatability of whole microorganisms immobilized by the PVA-freezing method. Water Science & Technology 26: 1037-1046.16.Azad, S.A.

Vikineswary, S. Chong, V.C. 2003. Waste grown Rhodovulum sulfidophilum biomass foraquaculture feed supplement. Seminar Penyelidikan Jangka Pendek. 1-5.17.Cassidy, M. B., Lee, H. and Trevors, J. T. 1996. Environmental applications of immobilized microbial cells: A review.

Journal of Industrial Microbiology 16: 79-101.18.Chien, Y. H. and Liang, R. Y. 1994. Paper presented in World Aquaculture ’94, New Orleans, Louisiana, Jan. p. 12.19.Cheng, X., Tu, X. R., Wei, S. J. and Tu, G. Q. 2009. Isolation and identification of one strain photosynthetic bacteria and investigation of its ability of treating sewage. Journal of Anhui Agricultural Sciences 37(10):4391-4393.20.Chen, C.Y. Yeh, K.L. Aisyah, R. Lee, D.J. Chang, J.S. 2010. Cultivation photobioreactor design and harvesting of microalga for biodiesel production: A critical review. Bioresource Technology. 102, 71-81.21.Cui, B. C., Zhang G. X., Hou, B., Li. R. and Shao, S. Y. 2010. Effect of carbon and nitrogen source on properties of hydrogen production with photosynthetic bacteria group. Environmental Science & Technology 33(12): 5-8.22.Deregibus, V.A. Sanchez, R.

A.Casal, J.J. 1983. Effects of light quality on tiller production in Lolium spp. Plant Physiology. 72, 900-902.23.Dougher, T.A.O. Bugbee, B. 2001.

Evidence for yellow light suppression of lettuce growth. Photochemistry and Photobiology. 73, 208-212.24.Eckenfelder, W. W. 1967. Theory of biological treatment of trace wastes. Journal of Water Pollution Control Federation 30: 240-250.25.Ernster, L. and Dallnera, G. 1995. Biochemical, physiological and medical aspects of ubiquinone function. Biochimica et Biophysica Acta-Biomembranes 1271: 195-204.26.Feng, Z. M., Hu, X.

M., Dong Y. H. and Wang, Y. 2010. Factors of O-chlorophenol Biodegradation by Photosynthetic Bacteria under Dark and Aerobic Conditions.

Environmental Science & Technology 33(12): 47-51.27.Folta, M.K. 2004. Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. Plant Physiology. 135, 1407-1416.28.Freer, A. Prince, S. Sauer, K. Papiz, M. Lawless, A.H. McDermott, G.

Cogdelland, R. Isaacs, N.W. 1996. Pigment–pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure. 4, 449-462.29.Freeman, A. and Lilly, M. D. 1998. Effect of processing parameters on the feasibility and operational stability of immobilized viable microbial cells. Enzyme and Microbial Technology 23: 335-345.30.Fu-Shiu Kuo, Yew-Hu Chien, Chang-Jiang Chen. 2012. Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris.

Bioresource Technology 113 : 315–318.31.Gerbsch, N. and Buchholz, R. 1995. New processes and actual trends in biotechnology. FEMS Microbiology Reviews 16: 259-269.32.Getha, K., Vikineswary, S. and Chong, V. C. 1998. Isolation and growth of the phototrophic bacterium Rhodopseudomonas palustris strain B1 in sago-starch-processing wastewater. World Journal of Microbiology and Biotechnology 14:

505-511.33.Gemerden, H.V. Mas, J. 2004. Ecology of phototrophic sulfur bacteria. Anoxygenic Photosynthetic Bacteria. 2, 49-85.34.Gupta, R.S.

2005. Evolutionary relationships among photosynthetic bacteri. Discoveries in Photosynthesis. 76, 1087-1097.35.Guo, J., Peng, Y., Huang, H., Wang, S., Ge, S., Zhang, J. and Wang, Z. 2010. Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater. Journal of Hazardous Materials 179: 471–479.36.Herbert, R. A. 1976. Isolation and identification of photosynthetic bacteria (Rhodospirillanceae) from Antarctic marine and freshwater sediment. Journal of Applied Bacteriology 41: 75-80.37.Herek, J. L.

Wohlleben, W. Cogdell, R. J. Zeidler, D. and Motzkus, M. 2002. Quantum control of energy flow in light harvesting. Nature International Weekly Journal of Science 417: 533-535.38.Hochman, A. and Shemesh, A. 1987. Purification and characterization of a catalase-peroxidase from the photosynthetic bacterium Rhodopseudomonas capsulata. The Journal of Biological Chemistry 262(14): 6871-6876.39.Ibrahim, S., Vikineswary. S., Al-Azed, S., Chong, L. L. 2006. The effects of light intensity, inoculum size, and cell immobilisation on the treatment of sago effluent with Rhodopseudomonas palustris strain B1. Biotechnology and Bioprocess Engineering 11: 377-381.40.Imhoff, J. F., Truper, H. G. and Pfennig, N.

1984. International Journal of Systematic Bacteriology 34: 340.41.Isaka, K., Yoshie, S., Sumino, T., Inamori, Y. and Tsuneda, S. 2007.

Nitrification of landfill leachate using immobilized nitrifying bacteria at low temperatures. Biochemical Engineering Journal 37: 49–55.42.Karel, S. F., Salmon, P. M., Stewart, P. S. and Robertson, C.R. 1990. Reaction and diffusion in immobilized cells: fact and fantasy. In: de Bont JAM, Visser J, Mattiasson B and Tramper, J. (eds) Physiology of immobilized cells. Amsterdam: Elsevier p115–26.43.Katsuda, T. Yegani, R. Fujii, N.

Igarashi, K. Yoshimura, S. Katoh S.44.2004(a). Effects of light intensity distribution on growth of Rhodobacter capsulatus. Biotechnology Progress.

20, 998-1000.45.Katsuda, T. Lababpour, A. Shimahara, K. Katoh, S.2004(b). Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzyme and Microbial Technology. 35, 81-86.46.Kobayashi, M. and Nakanishi, H. 1971. Construction of a purification plant for polluted water using photosynthetic bacteria. Journal of Fermentation Technology 49(9): 817-825.47.Koku, H. Eroglu, I. G?nd?z, U.

Y?cel, M. T?rker, L. 2002. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy. 27, 1315-1329.48.Kuo, J., Lin, H. P.and Liu, J. K. 2007. Characterization of phototrophic purple non-sulfur bacteria isolated from a eutrophic lake in Taiwan. Platax 4:39-47.49.Lee, H.J. Park, J.Y. Han, C.H. Chang, S.T. Kim, Y.H. Min, J. 2010.Blue LED and succinic acid enhance the growth of Rhodobacter sphaeroides. Wrold Journal of Microbiol Biotechnol.50.Long, S., Xie, S. and Duan, S. 2002. Photosynthetic bacteria and their applied actualities. Ecologic Science 21(1): 91-94..51.Lu, H., Zhang, G., Wan, T. and Lu, Y. 2011. Influences of light and oxygen conditions on photosynthetic bacteria macromolecule degradation: Different metabolic pathways. Bioresource Technology 102:

9503-9508.52.Margaritis, A., Merchant, F. J. A. 1984. Advances in ethanol production using immobilized cell systems. Critical Reviews in Biotechnology 2: 339-393.53.Madigan, M. T. 1995. Microbiology of nitrogen fixation by anoxygenic photosynthetic bacteria . In: Blankenship, R.

E., Madigan, M. T. and Bauer, C. E. (eds) Anoxygenic Photosynthetic Bacteria(Advances in Photosynthetic and Respiration, Vol 2), p.915-928.

(4)

Kiuwer Academic Publishers, Dordrecht.54.Matthijs, H.C.P. Baalke, H. Hes, U.M.V. Kroon, B.M.A. Mur. L.R. Binot, R.A. 1996. Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnology and

Bioengineering. 50, 98-107.55.Madigan, M.T. Jung, D.O. 2009. An overview of purple bacteria: systematics, physiology and habitats. The Purple Phototrophic Bacteria. 1-15.56.Naichia, Yeh. and Jen-Ping Chung,. 2009. High-brig htness LEDs —Energy ef?cient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews 13: 2175–218057.Okamoto, K. Yanagi, T. Takita, S. Tanaka, M. Higuchi, T. Ushida, Y. Watanabe H. 1996. Development of plant growth apparatus using blue and red LED as artificial light source. ISHS Acta Horticulturae. 440.58.Parkin, T.B. Brock, T.D. 1980. The effects of light quality on the growth of phototrophic bacteria in lakes. Archives of Microbiology. 125, 19-27.59.Park, K.H. Lee, C.G. 2000. Optimization of algal photobioreactors using flashing lights. Biotechnology and Bioprocess Engineering. 5, 186-190.60.Peterman, E. J. G., Dukker, F. M., Van Grondelle, R. and van Amerongen, H. 1995. Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants. Biophysical Journal 69(6): 2670-2678.61.Pfennig, N. 1977. Phototrophic green and purple bacteria: A comparative systematic survey. Annual Review of Microbiology 31: 275-290.62.Pilkington, P. H., Margaritis, A. H.

and Mensour, N. A. 1998. Mass transfer characteristics of immobilized cells used in fermentation processes. Critical Reviews in Biotechnology 18:237–255.63.Radovich, J. M. 1985. Mass transfer effects in fermentations using immobilized whole-cells. Enzyme and Microbial Technology 7:2-10.64.Sasikala, K., Ramana, C. and Rao, P.A. 1993. “Anoxygenic phototrophic bacteria: physiology and advances in hydrogen production technology”. Journal of Applied Microbiology 38: 211.65.Sanchez, J. F., Fernandez, J. M., Acien, F. G., Rueda, A., Perez-Parra, J. and Molina, E. 2008. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochemistry 43:

398–405.66.Sawanboonchun, J. Roy, W. J. Robertson, D.A. Bell, J.G. 2008. The impact of dietary supplementation with astaxanthin on egg quality in Atlantic cod broodstock (Gadus morhua, L). Aquaculture.283,97-101.67.Seo, J. K., Jung, I. H., Kim, M. R., Kim, B. J., Nam, S. W. and Kim, S. K. 2001. Nitrification performance of nitrifiers immobilized in PVA for a marine recirculating aquarium system. Aquacultural Engineering 24: 181-94.68.Serdyuk, O. P., Smolygina, L. D., Kobzar, E. F. and Gogotov, I. N. 1993. Occurrence of plant hormones in cells of the phototrophic purple bacterium Rhodospirillum rubrum 1R. FEMS Microbiology Letters 109-113.69.Stewart, G.G. and Russel, I. 1986. One hundred years of yeast research and photosynthetic bacteria on inhibiting lipid per oxidation. Shanghai JIaotong University 32(3): 107-109.70.Takano, H. Arai, T.

Hirano, M. Matsunaga, T. 1995. Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp. NKBG 042902. Applied71.Tada, C. Tsukahara, K. Sawayama, S. 2006. Illumination enhances methane production from thermophilic anaerobic digestion. Applied Microbiology and Biotechnology. 71, 363-368.72.YatsuhashiKadotaWada, H. , A. Wada, M. 1985. Blue- and red-light action in photoorientation of chloroplasts in Adiantum protonemata. Planta. 165, 43-50.

參考文獻

相關文件

When waves from coherent sources meet, stable interference can occur - laser light (produced by.. cooperative behavior

Basing on the observation and assessment results, this study analyzes and discusses the effects and problems of learning the polynomial derivatives on different level students

Most of teachers agree with positive effects of the 99 curriculum on practical instruction in school, however, they seem to concern inequalities of content between volumes and

- Highlights of course content, briefing on further study pathways and career prospects - Brief introduction of the functions and required skills of public relations (PR) -

Radiographs of Total Hip Replacements 廖振焜 林大弘 吳長晉 戴 瀚成 傅楸善 楊榮森 侯勝茂 2005 骨科醫學會 聯合學術研討會. • Automatic Digital PE

The content of the set of `sutra` is limited to the topics of aggregates, sources, dependent arising and so forth, whereas the Vast Texts are not included

- Summary of Survey Results - Household Survey on Information Technology Usage and Penetration, OGCIO. - 伍婉嫻, 馮婉嫻, 吳浩希: (2005): 《跳出「網」惑

Q.10 Does your GRSC have any concerns or difficulties in performing the function of assisting the SMC/IMC to review school‐based policies and