• 沒有找到結果。

從腫瘤轉移機轉談甲狀腺未分化癌藥物治療之進展

N/A
N/A
Protected

Academic year: 2021

Share "從腫瘤轉移機轉談甲狀腺未分化癌藥物治療之進展"

Copied!
9
0
0

加載中.... (立即查看全文)

全文

(1)

聯絡人:張天鈞 通訊處:100台北市中山南路7號 台大醫院內科部

從腫瘤轉移機轉談甲狀腺未分化癌藥物治療之進展

花士哲1 盧介祥1 張天鈞2

1嘉義基督教醫院 內科部內分泌新陳代謝科

2台大醫院 內科部代謝內分泌科

前言

癌症的死亡原因,絕大多數 (約90%) 病人 是死於轉移,而非腫瘤本身。腫瘤要成功地轉 移至遠處,盡其所能要運用各種策略以完成下 列幾個步驟:(1) 脫離原腫瘤並移行 (migrate) 進

入血液或淋巴系統 ( intravasation )、(2) 定位及 辨認要移轉的目標位置並轉出血液或淋巴系統 ( extravasation )、 (3) 建立好轉移基地,並長成 新的腫瘤。由於目前分子醫學的進步,愈來愈 瞭解癌轉移的機轉,也開發出愈多的標靶藥物

摘 要

絕大多數癌症是死於轉移而非腫瘤本身,因此瞭解轉移的機轉是現今很重要的研究課 題。早在十九世紀,有一位Paget學者,提出一個種子與土壤的假說 (seed and soil hypothesis) 來解釋轉移現象,即擴散的癌細胞如種子,必須有適合其生長的特殊土壤(目標器官),才 能成功順利地長成而轉移腫瘤。癌細胞病理上,猶如寄生蟲,需要依賴並利用宿主環境,才 能自我存活。腫瘤為了成功轉移,本身會運用各種策略,除了血管新生作用之外,還有其它 機轉,比如由上皮細胞轉型成間質細胞(epitheilial-to-mesenchymal transition, EMT)以更具 移行力和侵犯力,也能適應各種不同環境轉換不同細胞形態的高度可塑能力。而腫瘤與其所 處的宿主微環境(microenviorment),包括纖維母細胞、免疫細胞和胞外間質等,都有緊密 的交互作用,也會決定並影響腫瘤轉移的進程。關於癌細胞為什麼會轉移到特定的目標器官

,近來有研究證據支持細胞激素及其對應受體,類似發炎機轉的理論。也有研究提出癌症幹 細胞的觀念。甲狀腺未分化癌為一有高轉移率與死亡率的癌症,傳統的治療方式包括手術、

放射線治療、化學治療或其合併治療,效果非常不理想,病患經診斷後平均只能存活三個 月。透過對於癌轉移機轉的更多認識,現在有許多分子標靶的藥物研究進行中,在人體試驗 上的效果令人期待。

關鍵詞:癌症轉移(Cancer metastasis)

機轉(Mechanism)

甲狀腺未分化癌(Anaplastic thyroid cancer, ATC)

標靶療法(Target therapy)

(2)

來對抗癌症。

甲狀腺未分化癌是最難治療的甲狀腺癌,

也是存活期最短的癌症之一,雖然放射線療法 有效,但病人卻容易因轉移而死亡,因此若能 了解轉移的機制,並加以抑制,甲狀腺未分化 癌的治療就會變得較為容易。

癌細胞轉移運用的多種策略

1.上皮細胞轉型成間質細胞 (epithelial-to- mesencymal transition, EMT )

癌細胞為了會變得更具有侵犯(invasive- ness) 和移行的能力,進而遠處擴散(dissemi- nation ) ,轉移細胞會與原腫瘤脫離細胞間 的連結,也會由原本上皮細胞 (epithelial cell) 的 表 面 的 分 子 標 記 及 細 胞 特 質 轉 換 成 間 質 細 胞 (mesenchymal cell)的型態,如表一所列,

這現象稱為 epithelial-to-mesenchymal transition (EMT)1-3

不同的腫瘤類型會有不同侵犯周邊組織的 型式4,組織學上發現主要有兩大類型。第一種 類型為單一細胞侵犯型(single cell invasion),

在腫瘤周邊組織會發現單一或散落的癌細胞。

第二種類型為集體細胞侵犯型(collective cell invasion),即發現癌細胞成群結集在一起,而 非單獨行動。第一種單一細胞侵犯型主要會以 類纖維母細胞(fibroblast-like)或類白血球細胞 (leukocyte-like)模式在胞外間質(extracellula

matrix, ECM)上移行。類纖維母細胞模式具有下 列幾個特性:(1)像纖維母細胞的型態、(2)

細胞間連結消失、(3)侵犯能力及細胞與胞外 間質的交互作用較強,例如細胞表面表現較多 的integrin和蛋白質水解 (proteases)、(4)細 胞分裂能力低5。黑色素細胞瘤(melanoma)即 屬此型2,會在 ECM上挖隧道前進。相反地,類 白血球細胞像阿米巴式(ameboid)的移動,和 胞外間質的交互作用較弱,不需要依賴蛋白質 水解 分解 ECM,而是靠自己能變形通過 ECM 上的隙縫而前進6,有些血液腫瘤和神經內分泌 腫瘤(如肺小細胞癌)等2即屬此類。

集體細胞侵犯型即侵犯組織的癌細胞仍保 留細胞彼此間的連結。而這集合細胞中,比較 特殊的是位於侵犯前端(invading front)的細胞 群,它們細胞表面會表現較多的integrin,和 ECM有較強的連結,也有較多能分解胞外間質 的matrix metalloproteinase(如MT1-MMP、

urokinase plasminogen activator(uPA)、uPA receptor、MMP-2等)7。這現象與胚胎發育過程 中的型態發育機轉可能相仿。

2.癌細胞之可塑性(Tumor cell plasticity)

癌 細 胞 的 可 塑 性 很 強 , 是 指 它 為 了 完 成 轉移的目的,可以在不同的環境中轉換成不同 的細胞型態,除了前面所提到的EMT,間質 細胞的型態也會因所處的環境中有蛋白質水解 抑制劑,而轉換成不需依賴水解 的阿米巴

表一:上皮細胞與間質細胞的差異性

上皮細胞 間質細胞

表面分子標記 細胞特質 表面分子標記 細胞特質

E-cadherin Epithelial N-cadherin Fibroblastic Cytokeratins Nonmotile Vimentin Motile

ZO-1 Noninvasive NCAM Invasive

Occludin Anoikis (apoptosis triggered

Snail Scattering by lack of attachment to a

substrate)

Desmoplakin Polarized Twist Anoikis resistance Fibronectin Low proliferation MMP-2, -3, -9 Nonpolarized Integrin α

v

β6

Adapted from Yilmaz M, Christofori G, Lehembre F. Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med 2007; 13: 535-41.

(3)

細胞型態。所以癌細胞有能力依所處的微環境 (microenvironment)不同,而去轉換不同的侵犯 模式,比如處在不同的抗癌藥物的環境下8。當 抵達要轉移的目的地時,穿出血管後,間質細 胞 型 態 又 可 以 轉 換 成 原 來 上 皮 細 胞 的 型 態 (mesenchymal-to-epithelial translation, MET )9,生 成新的腫瘤。

3.宿主微環境(microenviorment)的重要性 病 理 學 上 , 癌 症 病 理 其 實 跟 寄 生 蟲 很 類 似 , 需 要 依 賴 並 利 用 宿 主 環 境 , 才 能 自 我 存 活。腫瘤為了自己轉移成功,除了可能有EMT 和能適應各種不同環境的高度可塑性等機轉,

腫瘤與其所處的宿主微環境(microenviorment),

包括纖維母細胞、免疫細胞和胞外間質等,都 有緊密的交互作用,也會決定和影響腫瘤轉移 的進程。例如有許多研究發現把低度轉移能力 的癌細胞曝露在有致癌轉移訊號的微環境中,

會轉變成有高度的侵犯和轉移能力10-16。而不同 個 體 基 因 的 差 異 性 也 會 造 成 不 同 的 宿 主 微 環 境,微環境中致癌和抑癌因子的差異,會影響 到腫瘤的轉移能力17,18

胞 外 間 質 中 的 纖 維 母 細 胞 在 癌 轉 移 上 也 有很重要的角色。纖維母細胞會分泌許多間質 (matrix),而胞外間質的構成內容可能會決定腫 瘤會轉移到那個器官19。例如 fibronectin堆積的 增加可以做為導引轉移的訊號20。轉移處胞外 間 質 內matrix metalloproteinases和matrix metalloproteinase inhibiors濃度的消長也會影響 到腫瘤是否會轉移21,22

4. 細胞激素(cytokines)

免疫細胞會被吸引到發炎的地置,是因為 細胞和發炎位置間有細胞激素與細胞激素受體

(receptor)互相吸引的作用力存在23。而目前仍 然不太清楚癌細胞為什麼會轉移到特定的目標 器官,有各種嘗試解釋的假說,較多的證據支 持把發炎機轉的『細胞激素(cytokines)與細胞 激素受體(cytokine receptors)交互作用』用在 解釋轉移機轉,即癌細胞會運用許多種細胞激 素來告訴它要轉移到何處24。以乳癌細胞為例,

細胞表面會表現很多如 CXCR4和 CCR7等細胞 激素受體,而發現乳癌常轉移的器官,也表現

較多的會相吸引的細胞激素如 CXCL12/SDF-1α 和CCL21/6kine等25。胃癌和攝護腺癌的轉移也 被發現有互相作用的細胞激素及其相對應受體

的存在26,27。腫瘤細胞會分泌血管內皮生長因子

VEGF(vascular endothelial growth factor)、

TGF-β、TNF-α(tumor necrosis factor-α, TNF-α)等細胞激素來誘導肺部內皮細胞表現 S100A8及S100A9等 chemoattractants來幫助癌細 胞轉移28。但相反地,如果目標器官無法表現相 對應的細胞激素或相對應受體,轉移就不會成 功29。因此,目標器官上間質細胞所表現的激素 或相對應受體,能控制轉移速率30

5.癌細胞轉出血管(extravasation)

癌細胞會黏附在血管內皮細胞,之後再移 行出血管而侵入周邊組織。其分子機制迄今仍 不甚清楚。可能的機轉是:(1) 癌細胞會與內 皮細胞上的特定表面受體結合、(2)血小板的 協助角色。血循中的癌細胞會利用血小板來躲 避α-腫瘤壞死因子的毒殺而增加存活度31,並幫 助腫瘤栓塞至遠端的小血管。血小板也可以促 進癌細胞在與內皮細胞黏附之後的血管新生作 用,如此可以促進轉移腫癌的生長32-35。在動物 實驗上,也發現阿斯匹靈可以抑制癌之轉移,

可能是因降低癌栓塞的發生率和血管新生作用

36-38。許多腫瘤癌細胞會過度表現血管內皮生長

因子,是最重要的血管新生因子,會增加血管 內皮細胞的通透性,促進癌細胞的轉出血管39。 6.癌症幹細胞(cancer stem cells)

早在1889年,Paget40提出一個種子與土壤的 假說(seed and soil hypothesis)來解釋轉移現象,

即擴散的癌細胞如種子,必須有適合其生長的 特殊土壤(目標器官),才能成功順利地長成而轉 移腫瘤。Paget的假說現在有愈來愈多研究證據 的支持。近年來發現,癌症進展過程中,轉移 癌細胞並非是晚期才會出現的,而是在很早期 就 有 了 。 有 研 究 指 出 可 能 有 癌 症 的 幹 細 胞 (cancer stem cells)或初發細胞(cancer-initiating cells, CIC)的存在,和幹細胞類似,它們具有自 我更新(self-renewal)的能力且會形成腫瘤。原發 的腫瘤上可能有一群CIC的細胞,會離開原腫瘤 而扮演像種子的角色到遠處長成轉移腫瘤41,42

(4)

CIC形成的機轉可能是源自:(1)正常幹細胞的癌 化(oncogenic transformation)、(2)前驅細胞 (progenitor cell)的轉型突變、(3)癌細胞與幹細胞 的融合(fusion of cancer cells with stem cells)、(4) 癌細胞轉成未分化型態(dedifferentiaton of cancer cell)42。癌症幹細胞的存在,目前研究者已經在 血癌、乳癌、肺癌、前列腺癌、胰臟癌、腦癌 等癌症找到證據43-47。若能找到並深入瞭解各種 癌症其幹細胞之特性,癌轉移之治療會有極大 的突破性發展。

7.血管新生(angiogenesis)

血管新生(angiogenesis)在正常人體生理上,

比如胚胎發育、傷口癒合、女性月經週期等,

都有極重要的角色。在腫瘤的生長與轉移機轉 上,血管新生也同樣有很重要的角色。隨著腫 瘤長大,它不再只依靠滲透作用來獲取養分,

必須透過血管新生作用來供給。血管新生機轉 是個精密調控的動態平衡,包括腫瘤與微環境 的交互作用。血管新生因子〔如VEGF, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), placental growth factor (PlGF), matrix metalloproteinases (MMPs)〕和內生性的抑制血 管 生 成 因 子(如thrombostatin, angiostatin, tumstatin)會彼此交互作用來抑制血管新生。腫 瘤若突變失去抑癌基因(如P53)或是處於缺氧或 發炎的環境中,便會刺激血管新生。內皮細胞 會受到刺激而增生並移行至腫瘤內部並形成新 的腫瘤血管。腫瘤也會過度分泌 VEGF, VEGF還 會使骨髓的內皮細胞前驅細胞增生移行並分化 成血管內皮細胞48。同時,源自造血幹細胞的單 核球細胞和巨噬細胞除了分泌血管新生因子之 外,也會分泌蛋白質水解 去構築新的腫瘤血 管網絡。

腫瘤的新生血管和正常血管不同,它非常 曲折,有大小不一的管徑和分支分流。而管壁 細胞是腫瘤細胞與內皮細胞的組合,管壁外圍 的平滑肌細胞缺乏內皮細胞並擁有高度複製能 力和分泌血管新生因子,包括VEGF49,50。雜亂的 血管分支和動靜脈分流會增加缺氧壓力,也會 促進血管新生51和血管通透性增加52。血管壁基

底膜的不連續相連接和缺乏良好的淋巴循環,

常 會 造 成 腫 瘤 的 過 高 組 織 壓 力(interstitial pressure)49,會影響抗癌藥物的作用。

甲狀腺未分化癌藥物治療新進展

絕 大 多 數( 9 0 % ) 罹 患 甲 狀 腺 未 分 化 癌 (anaplastic thyroid cancer, ATC)的病人於診斷時 就已經有腺體外擴散現象,而且75%在病程中會 有遠處轉移53,54。ATC不管腫瘤體積大小、是否 有淋巴或遠處轉移,致死率均非常高。美國癌 症聯合會(AJCC)都將它歸為Stage Ⅳ55。目前的 治療方式包括手術、放射線治療、化學治療或 其合併治療,但效果非常不理想,病患經診斷 後平均只能存活三個月。由於超過一半的ATC 病人在確診時已有癌轉移,因此化學治療的角 色是很重要的,過去臨床上常用doxorubicin的單 一 療 法 , 目 前 療 法 會 使 用 多 種 藥 物 組 合 (如 cisplatin、bleomycin、melphalan、paclitaxel等),

但迄今仍無有效的療法,基礎醫學目前對於甲 狀腺癌,包括ATC,致癌分子機轉有愈來愈多 的瞭解,也因此有愈來愈多的分子標靶藥物陸 續投入活體外、動物或人體的研究與試驗,簡 介 各 類 型 標 靶 藥 物 與 研 究 最 新 結 果 , 整 理 如 表二:

1.以 Ras蛋白導向之訊息傳遞路徑阻斷劑 細胞生長訊息傳遞路徑tyrosine kinase-Ras- Raf-MEK之異常活化可發生於約七成的甲狀腺 癌,因此為重要的標靶治療目標56

其中關鍵步驟之一,Ras蛋白要依附到細胞 膜上需要一種稱為 "脂肪酸轉移酵素"(farnesyl protein transferase, FPTase)將Ras蛋白質脂化

(farnesylation),才能進行接下來的訊息傳 遞。脂肪酸轉移酵素抑制劑,如manumycin,即 是抑制Ras蛋白質的脂化,使得這樣的訊息傳導 不容易進行,達到抑制癌細胞的效果。不論是 m a n u m y c i n 單 獨 使 用 或 協 同 p a c l i t a x e l 、 doxorubicin、cisplatin等傳統化療藥物試驗,於 活體外研究顯示能抑制ATC細胞株生長57。於活 體腫瘤異種移植老鼠(xenograft mouse model)研 究, manumycin與paclitaxel合併使用能使抑制 ATC腫瘤生長和血管新生58

(5)

另一作用標靶位置是抑制 Raf kinase的活性,

如 Sorafenib (Bay 43-9006)。活體腫瘤異種移植 老鼠研究顯示亦能使抑制 ATC腫瘤生長和血管 新生59。目前有針對 ATC與已轉移甲狀腺乳突癌 之phase II臨床試驗進行中,但結果尚未發 表。

2.酪胺酸激 抑制劑 (tyrosine kinase inhibitors) 甲狀腺癌會表現過量的 receptor tyrosine kinase (RTK),如血管內皮生長因子(vascular endothelial growth factor, VEGF)、表皮生長因子 (epidermal growth factor, EGF)等,這與腫瘤血管 新生作用發生有密切相關。

使用拮抗VEGF的單株抗體,Bevacizumab (avastin)在活體腫瘤異種移植老鼠研究顯示能抑 制ATC腫瘤生長60。 另 一 酪 胺 酸 激 抑 制 劑 Gleevec(imatinib, ST1571) 於活體外細胞株研究

有爭議61,62,但目前有進行中的phase II 臨床試

驗。而 EGF receptor tyrosine kinase抑制劑,如 Gefitinib(Iressa, ZD1839),雖然於活體外細胞株 研究單獨使用或合併 Gleevec,能抑制ATC63-67, 但在 phase II 臨床試驗結果還是令人失望68。 AEE788能雙重抑制EGF受體及VEGFR受體酪胺 酸激 活性,於活體外細胞株研究顯示能抑制 生長並誘使凋亡,在活體腫瘤異種移植老鼠研 究中單獨使用或合併paclitaxel顯示均能抑制ATC 腫瘤生長69

3.血管新生抑制劑(antiangiogenic agents) Combrestatin A4 phosphate(CA4P)是與 tubulin結合的蛋白質,能干擾血管新生。不論在 活體外細胞株70、活體腫瘤異種移植老鼠研究70、 phase I 臨床試驗71均 顯 示 有 很 好 抑 制 ATC的 效果,但 phase II 臨床試驗結果尚未發表。

表二:目前治療甲狀腺未分化癌,實驗上(in vitro或 in vivo或臨床試驗)的有效藥劑

類別 機轉 藥劑名 參考文獻

以Ras蛋白導向之訊 抑制脂肪酸轉移酵素 Manumycin in vitro57

息傳遞路徑阻斷劑 in vivo58

抑制Raf kinase Sorafenib (Bay 43-9006) in vitro59Phase II trial 結果尚未發表 酪胺酸激 抑制劑 拮抗VEGF的單株抗體 Bevacizumab (Avastin) in vivo60

抑制EGF receptor Gleevec (imatinib, ST151) in vitro61,62Phase II trial

tyrosine kinase 進行中

抑制EGF receptor Gefitinib (Iressa, ZD1839) in vitro63-67Phase II trial

tyrosine kinase 結果無效68

雙重抑制EGF受體及 AEE788 in vitro & in vivo69 VEGFR受體酪胺酸激

血管新生抑制劑 與tubulin結合之蛋白 Combrestatin A4 in vitro & in vivo70 phosphate Phase I trial 結果有效71 細胞凋亡誘發劑 阻滯細胞週期促凋亡 Aplidine in vivo72

抑制Integrin ligase QLT0267 in vitro73 in vivo73 抑制Proteasome Bortezomib in vitro74 抑制Rho蛋白的geranylgeranylation Lovastatin in vitro75 熱休克蛋白90抑制劑 抑制細胞生長訊息傳遞 17-AAG in vitro76

組織蛋白去乙醯 抑制調控細胞生長分化 FK228 in vitro77

抑制劑 基因的轉錄 SAHA in vitro78

促癌細胞分化 機轉未明 Lovastatin in vitro79

(6)

4.細胞凋亡誘發劑(apoptosis-inducing agents) Aplidine能抑制癌細胞蛋白質和DNA合成、

停滯於細胞週期G1 phase、並誘發細胞凋亡。

Aplidine於活體腫瘤異種移植老鼠研究上顯示能 抑制 ATC腫瘤生長72

Integrin ligase是參與中介細胞生長與生存 的訊號,在一些癌細胞會被過度表現。QLT0267 是透過抑制integrin ligase進而抑制癌細胞生長並 誘發凋亡,在活體外細胞株和活體腫瘤異種移 植老鼠研究顯示能抑制 ATC73

Ubiquitin-proteasome 路徑是細胞內分解蛋 白質之主要路徑。Bortezomib能抑制 proteasome 在活體外細胞株研究顯示會促使ATC凋亡74

Lovastatin為3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor,一種史他汀類降 血脂藥,透過抑制Rho蛋白的geranylgeranylation,

於活體外細胞株研究顯示會促使ATC凋亡75。 5.熱休克蛋白90抑制劑(heat shock protein 90 inhibitors)

熱休克蛋白90是一能穩定生長因子受體及 其訊息傳遞分子的伴護蛋白(chaperone)。透過抑 制熱休克蛋白90,能抑制細胞生長的訊息傳遞 進 而 導 致 細 胞 死 亡 。1 7 - A l l y l a m i n o - 1 7 - demethoxygeldanamycin (17-AAG)為熱休克蛋白 90抑制劑,在活體外細胞株研究發現能誘使 ATC細胞死亡,但非凋亡76

6.組織蛋白去乙醯 抑制劑(Histone deacetylase inhibitor)

組 織 蛋 白 去 乙 醯 能 使 細 胞 核 染 色 質 緻 密 化 , 抑 制 調 控 細 胞 生 長 分 化 基 因 的 轉 錄 。 FK228為組織蛋白去乙醯 抑制劑,在活體外 ATC細胞株研究發現能抑制生長77。另一組織蛋 白去乙醯 抑制劑 Suberoylanilide hydroxamic acid (SAHA),活體外 ATC細胞株研究亦發現能 抑制其生長78

7.促癌細胞分化劑

促進ATC自未分化轉變成較高之分化程度,

將可減少其轉移機率及有利於使用原子碘來做 較有效的治療。Lovastatin於活體外 ATC細胞株 研究發現能促進其分化79

8.基因治療(gene therapy)

喪失抑癌基因p53或其功能是甲狀腺分化癌 轉成未分化癌的重要機轉。利用腺病毒攜帶p53 基因引入未分化癌細胞株,活體外及動物活體 研究發現可恢復對傳統化療藥物的反應80。 9.清除癌症幹細胞(cancer stem cell eradication)

傳統的癌症發生理論,即所謂的 "多重階段 致癌模式(multi-step carcinogenesis model),而癌 症幹細胞的致癌理論是因癌症幹細胞可以自我 更新而不斷複製,以提供源源不絕已分化的癌 細胞。癌症幹細胞的存在,目前研究者已經在 血癌、乳癌、肺癌、前列腺癌、胰臟癌、腦癌 等癌症找到證據43-47。近來也有愈來愈多研究支 持甲狀腺癌幹細胞的存在81,雖然目前還不太清 楚其特性,但如果將來能直接選擇對準癌幹細 胞的抗癌藥物,再配合傳統藥物治療後,將使 癌細胞沒機會再復發,大大地增加治癒率,為 未來最具潛力的研究方向。

結語

癌症的進程,從原發腫瘤的生長至最終遠 處轉移的發生,中間各個步驟的分子機轉已經 不再像一個黑箱,而是愈來愈清楚了。標靶藥 物的開發,除了血管新生的抑制劑之外,未來 應會有更多針對腫瘤的基因表現、抑制EMT、

抑制intravasation或extravasation、改變宿主的微 環境、改變或干擾相關的細胞激素或其對應受 體、抑制癌症幹細胞的產生等各種不同機轉。

以甲狀腺未分化癌為例,已有學者發現PPAR gamma agonists (rosiglitazone和ciglitazone)能誘 發細胞發生EMT某種程度的逆轉82,不要轉成有 高度侵襲和轉移性的間質細胞型態。根據Paget 在十九世紀(1889)提出的『種子與土壤假說』40, 我們希望能發展新療法去破壞種子,阻止種子 的散播,防止適合種子生長的土壤形成。

參考文獻

1.Thiery JP, SleemanJP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Bio 2006; 7: 131-42.

2. Jechlinger M, Grunert S, Beug H, et al. 2002. Mechanisms in

epithelial plasticity and metastasis: Insights from 3D cultures

and expression profiling. J Mammary Gland Biol Neoplasia

2002; 7: 415-32.

(7)

3. Xue C, Plieth D, Venkov C, et al. The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res 2003; 63: 3386-94.

4. P. Friedl. Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 2004; 16: 14-23.

5. Lee JM, Dedhar S, Kalluri R, et al, The epithelial- mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006; 172: 973-81.

6. Sahai E. Mechanisms of cancer cell invasion. Curr Opin Genet Dev 2005: 15: 87-96.

7. Nabeshima K, Inoue T, Shimao Y, et al. Front-cell-specific expression of membrane-type 1 matrix metalloproteinase and gelatinase A during cohort migration of colon carcinoma cells induced by hepatocyte growth factor/scatter factor.

Cancer Res 2000; 60: 3364-69.

8. Hegerfeldt Y, Yusch M, Brocker EB, et al. Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. Cancer Res 2002; 62: 2125-30.

9. Brabletz T, Jung A, Spaderna S, et al. Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 2005; 5: 744-9.

10.Bernhard EJ, Gruber SB, Muschel RJ. et al. Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci USA 1994;

91: 4293-7.

11.Tsunezuka Y, Kinoh H, Takino T, et al. Expression of membrane-type matrix metalloproteinase 1 (MT1- MMP) in tumor cells enhances pulmonary metastasis in an experimental metastasis assay. Cancer Res 1996; 56:

5678-83.

12.Clark EA, Golub TR, Lander ES, et al. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 2000;

406: 532-5.

13.Hazan RB, Phillips GR, Qiao RF, et al. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 2000; 148: 779-90.

14.Welch DR, Sakamaki T, Pioquinto R, et al. Transfection of constitutively active mitogen-activated protein/extracellular signal-regulated kinase kinase confers tumorigenic and metastatic potentials to NIH3T3 cells. Cancer Res 2000; 60:

1552-6.

15.Ala-Aho R, Johansson N, Baker AH, et al. Expression of collagenase-3 (MMP-13) enhances invasion of human fibrosarcoma HT-1080 cells. Int J Cancer 2002; 97: 283-9.

16.Tester AM, Waltham M, Oh SJ, et al. Pro-matrix metalloproteinase-2 transfection increases orthotopic primary growth and experimental metastasis of MDA-MB-231 human breast cancer cells in nude mice. Cancer Res 2004;

64: 652-8.

17.Yang H, Crawford N, Lukes L, et al. Metastasis predictive signature profiles pre-exist in normal tissues. Clin Exp Metastasis 2005; 22: 593-603.

18.Crawford NP, Hunter KW. New perspectives on hereditary influences in metastatic progression. Trends Genet 2006; 22:

555-61.

19.Chung DC, Zetter BR, Brodt P. Lewis lung carcinoma variants with differing metastatic specificities adhere preferentially to different defined extracellular matrix

molecules. Invasion Metastasis 1988; 8: 103-17.

20.Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre- metastatic niche. Nature 2005; 438: 820-7.

21.Kruger A, Fata JE, Khokha R. Altered tumor growth and metastasis of a T-cell lymphoma in Timp-1 transgenic mice.

Blood 1997; 90: 1993-2000.

22.Kruger A, Sanchez-Sweatman OH, Martin DC, et al. Host TIMP-1 overexpression confers resistance to experimental brain metastasis of a fibrosarcoma cell line. Oncogene 1998;

16: 2419-23.

23.Oppenheim JJ, Zachariae CO, Mukaida N, et al. Properties of the novel proinflammatory supergene intercrine cytokine family. Annu Rev Immunol 1991; 9: 617-48.

24.Kakinuma T, Hwang ST. Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol 2006; 79: 639-51.

25.Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50-6.

26.Mashino K, Sadanaga N, Yamaguchi H, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res 2002; 62:

2937-41.

27.Taichman RS, Cooper C, Keller ET, et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 2002; 62: 1832-37.

28.Hiratsuka S, Watanabe A, Aburatani H, et al. Tumour- mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis Nat Cell Biol 2006; 8: 1369-75.

29.Jones DH, Nakashima T, Sanchez OH, et al. Regulation of cancer cell migration and bone metastasis by RANKL.

Nature 2006; 440: 692-6.

30.van Deventer HW, O'Connor W, Jr., Brickey WJ, et al. C-C chemokine receptor 5 on stromal cells promotes pulmonary metastasis. Cancer Res 2005; 65: 3374-9.

31.Nieswandt B, Hafner M, Echtenacher B, et al. Lysis of tumor cells by natural killer cells in mice is impeded by platelets.

Cancer Res1999; 59: 1295-300.

32.Gupta GP, Massagué J. Platelets and metastasis revisited: a novel fatty link. J Clin Invest 2004; 114: 1691-3.

33.Philippe C, Philippe B, Fouqueray B, et al. Protection from tumor necrosis factor-mediated cytolysis by platelets. Am J Pathol 1993; 143: 1713-23.

34.Mehta P. Potential role of platelets in the pathogenesis of tumor metastasis. Blood 1984; 63: 55-63.

35.Karpatkin S, Pearlstein E. Role of platelets in tumor cell metastases. Ann Intern Med 1981; 95: 636-41.

36.Nash GF, Turner LF, Scully MF, et al. Platelets and cancer.

Lancet Oncol 2002; 3: 425-30.

37.Gasic GJ, Gasic TB, Murphy S. Anti-metastatic effect of aspirin, Lancet 1972; 2: 932-3.

38.Dormond O, Foletti A, Paroz C, et al. NSAIDs inhibit alpha V beta 3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis. Nat Med 2001; 7: 1041-7.

39.Weis SM and Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 2005; 437:

497-504.

40.Paget S. The distribution of secondary growths in cancer of

the breast. Lancet 1889; 1: 571-3.

(8)

41.Bjerkvig R, Tysnes BB, Aboody KS, et al. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 2005; 5: 899-904.

42.Mehlen P and Puisieux A. Metastasis: a question of life or death. Nat. Rev. Cancer 2006; 6: 449-58.

43.Kim CFB, Jackson EL, Woolfenden AE, et al. Identification of bronchoalveolar stem cells in normal lung and lung cancer.

Cell 2005; 121: 823-35.

44.Park CH, Bergsagel DE, McCulloch EA. Mouse myeloma tumor stem cells: A primary cell culture assay. J Natl Cancer Inst 1971; 46: 411-22.

45.Meszoely IM, Means AL, Scoggins CR, Leach SD.

Developmental aspects of early pancreatic cancer. Cancer J 2001; 7: 242-50.

46.Hudson DL. Epithelial stem cells in human prostate growth and disease. Prostate Cancer Prostatic Dis 2004; 7: 188-94.

47.Huntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 2005;

5: 311-21.

48.Calfa CI, Rosenblatt JD, Cho HM, et al. Antibodies and antibody-fusion proteins as anti-angiogenic, anti-tumor agents. Update Cancer Therapeutics 2006; 1: 159-73.

49.Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249-57.

50.Dass CR, Su T . Delivery of lipoplexes for genotherapy of solid tumours: role of vascular endothelial cells. J Pharm Pharmacol 2000; 52: 1301-17.

51.Adair TH, Gay WJ, Montani JP. Growth regulation of the vascular system: evidence for a metabolic hypothesis. Am J Physiol 1990; 259(3 Pt 2): R393-R404.

52.Olesen SP. Rapid increase in blood-brain barrier permeability during severe hypoxia and metabolic inhibition. Brain Res 1986; 368: 24-9.

53.Shimaoka K, Schoenfeld DA, DeWys WD, et al. A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer 1985; 56: 2155-60.

54.Ahuja S, Ernst H. Chemotherapy of thyroid carcinoma. J Endocrinol Invest 1987; 10: 303-10.

55.American Joint Committee on Cancer. In: Fleming ID, et al.

editors. American Joint Committee on Cancer manual for staging cancer. 5th ed. Philadelphia: Lippincott-Raven; 1997.

56.Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 2006; 6:

292-306.

57.Yeung SC, Xu G, Pan J, et al. Manumycin enhances the cytotoxic effect of paclitaxel on anaplastic thyroid carcinoma cells. Cancer Res 2000; 60: 650-6.

58.Xu G, Pan J, Martin C, et al. Angiogenesis inhibition in the in vivo antineoplastic effect of manumycin and paclitaxel against anaplastic thyroid carcinoma. J Clin Endocrinol Metab 2001; 86: 1769-77.

59.Kim S, Yazici YD, Calzada G, et al. Sorafenib inhibits the angiogenesis and growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice. Mol Cancer Ther 2007;

6: 1785-92.

60.Bauer A, Terrell R, Doniparthi K, et al. Vascular endothelial growth factor monoclonal antibody inhibits growth of anaplastic thyroid cancer xenografts in nude mice. Thyroid 2002; 12: 953-61.

61.Podtcheko A, Ohtsuru A, Tsuda S, et al. The selective tyrosine kinase inhibitor, ST1571, inhibits growth of anaplastic thyroid cancer cells. J Clin Endocrinol Metab 2003; 88:

1889-96.

62.Dziba J, Ain K. Imatinib mesylate (Gleevec; ST1571) monotherapy is ineffective in suppressing human anaplastic thyroid carcinoma cell growth in vitro. J Clin Endocrinol Metab 2004; 89: 2127-35.

63.Lopez LP, Wang-Rodriguez J, Chang C, et al. Gefitinib inhibition of drug resistance to doxorubicin by inactivating ABCG2 in thyroid cancer cell lines. Arch Otolaryngol Head Neck Surg. 2007; 133: 1022-7.

64.Hoffmann S, Glaser S, Wunderlich A, et al. Targeting the EGF/VEGF-R system by tyrosine-kinase inhibitors--a novel antiproliferative/antiangiogenic strategy in thyroid cancer.

Langenbecks Arch Surg. 2006; 391: 589-96.

65.Nobuhara Y, Onoda Y, Yamashita Y, et al. Efficacy of epidermal growth factor receptor-targeted molecular therapy in anaplastic thyroid cancer cell lines. Br J Cancer 2005; 92:

1110-6.

66.Schiff BA, McMurphy AB, Jasser SA, et al. Epidermal growth factor receptor (EGFR) is overexpressed in anaplastic thyroid cancer, and the EGFR inhibitor gefitinib inhibits the growth of anaplastic thyroid cancer. Clin Cancer Res 2004;

10: 8594-602.

67.Kurebayashi J, Okubo S, Yamamoto Y, et al. Additive antitumor effects of gefitinib and imatinib on anaplastic thyroid cancer cells. Cancer Chemother Pharmacol 2006; 58:

460-70.

68.Pennell NA, Daniels GH, Haddad Rl, et al. A Phase II Study of Gefitinib in Patients with Advanced Thyroid Cancer.

Thyroid 2008; 18: 317-23.

69.Kim S, Schiff BA, Yigibasi OG, et al. Targeted molecular therapy of anaplastic thyroid carcinoma with AEE788. Mol Cancer Ther 2005; 4: 632-40.

70.Dziba JM, Marcinek R, Venkataraman G, et al.

Combretastatin A4 phosphate has primary antineoplastic activity against human anaplastic thyroid carcinoma cell lines and xenograft tumors. Thyroid 2002; 12: 1063-70.

71.Dowlati, Robertson K, Cooney M, et al. A phase I pharmokinetic and translational study of the novel vascular targeting agent combretastatin A-4 phosphate on a single- dose intravenous schedule in patients with advanced cancer.

Cancer Res 2002; 62: 3408-16.

72.Straight A, Oakley K, Moores R, et al. Aplidin reduces the growth of anaplastic thyroid cancer xenografts and the expression of several angiogenic genes. Cancer Chemother Pharmacol 2006; 57: 7-14.

73.Younes M, Kim S, Yigitbasi OG, et al. Integrin-linked kinase is a potential therapeutic target for anaplastic thyroid cancer.

Mol Cancer Ther 2005; 4: 1146-56.

74.Mitsiades CS, McMillin D, Kotoula V, et al. Antitumor effects of the proteasome inhibitor bortezomib in medullary and anaplastic thyroid carcinoma cells in vitro. J Clin Endocrinol Metab 2006; 91: 4013-21.

75.Zhong WB, Wang CY, Chang TC, et al. Lovastatin induces apoptosis of anaplastic thyroid cancer cells via inhibition of protein geranylgeranylation and de novo protein synthesis.

Endocrinology 2003; 144: 3852-9.

76. Braga-Basaria M, Hardy E, Gotfried R, et al. 17-Allylamino-

(9)

17- demethoxygeldanamycin activity against thyroid cancer cell lines correlates with heat shock protein 90 levels. J Clin Endocrinol Metab 2004; 89: 2982-8.

77.Kitazono M, Robey R, Zhan Z, et al. Low concentrations of the histone deacetylase inhibitor, depsipeptide (FR901228), increase expression of the NaP/I_ symporter and iodine accumulation in poorly differentiated thyroid carcinoma cells. J Clin Endocrinol Metab 2001; 86: 3430-5.

78.Mitsiades CS, Poulaki V, McMullan C. Novel histone deacetylase inhibitors in the treatment of thyroid cancer. Clin Cancer Res 2005; 11: 3958-65.

79.Wang CY, Zhong WB, Chang TC, et al. Lovastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, induces apoptosis and differentiation in human anaplastic thyroid carcinoma cells. J Clin Endocrinol Metab 2003; 88:

3021-6.

80.Nagayama Y, Yoloi H, Takeda K, et al. Adenovirus-mediated tumor suppressor p53 gene therapy for anaplastic thyroid carcinoma in vitro and in vivo. J Clin Endocrinol Metab 2000; 85: 4081-6.

81.Zhang Ping, Zuo Hui, Ozaki Takashi, et al. Cancer stem cell hypothesis in thyroid cancer. Pathol Int 2006; 56: 485-9.

82.Aiello A, Pandini G, Frasca F, et al. Peroxismal proliferator- activated receptor-gamma agonists induce partial reversion of epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Endocrinology 2006; 1474463-75.

The Mechanism of Cancer Metastasis and Advances in Potential Treatment for

Anaplastic Thyroid Cancer

Shih-Che Hua1, Chieh-Hsiang Lu1, and Tien-Chun Chang2

1Department of Endocrinology and Metabolism, Chia-Yi Christian Hospital;

2Department of Endocrinology and Metabolism, National Taiwan University Hospital

Most cancer deaths are caused by metastasis rather than the primary tumor. Therefore, nowadays, it

is crucial to understand the mechanism of metastasis more and more. Early in the nineteenth century, Paget

postulated the "seed and soil" theory to explain the phenomenon: the disseminating cancer cells ( "seed" ) need to

find the appropriate microenviorment in target organs ( "soil" ) for metastatic growth. Pathologically, as parasites,

the cancer cells exploit the host and survive depending on the host environment. Cancer cells can use multiple

strategies to metastasize successfully. Besides angiogenesis, other mechanisms exemplified as epithelial-to-

mesenchymal transition (EMT) making cells more migratory and invasive, and exhibiting marked cell plasticity for

adaptive switch in different host environment. There is also a close crosstalk and interaction between cancer cells

and the host microenvironment (including fibroblasts, immune cells, and extracelluar matrix). The interaction will

determine and influence the progression of cancer at all stages. Regarding why cancer cells would metastasize

to the specified distant organ, recently, there are emerging evidences supporting the chemoattraction theory (the

attraction between cytokines and its corresponding receptors), as the mechanism of inflammation. There are also

accumulating evidences supporting the concept of cancer stem cells. Anaplastic thyroid cancer (ATC) has very

high metastasis and mortality rates among all human cancers. Conventional treatments for ATC include surgery,

radiation therapy, chemotherapy, or their combination. Current treatment results are very disappointing and the

patients' average survival period is only three months after establishing diagnosis. Recently, because of the

better understanding the mechanism of metastasis, there are various potential target therapy medicines for ATC

conducted in vitro or in vivo experiments. The future clinical trial results may be promising.(J lntern Med Taiwan

2008; 19: 472-480)

參考文獻

相關文件

Our case highlights an enigmatic presentation of oral submucous fibrosis and its coexistence with oral cancer presenting with unusual neurological disturbance of the inferior

Efficacy of low-level laser therapy compared to steroid therapy in the treatment of oral lichen planus: A

1 In 2005 the World Health Organization defined BCAC as ‘‘an epithelial neoplasm that has cytological characteristics of basal cell adenoma (BCA), but a morphologic growth

Higher immunoexpression of HIF-1 a, NOTCH1, ADAM-12, and heparin-binding epidermal growth factor like growth factor (HB-EGF) in epidermoid cells in compari- son with mucous cells

In the second quarter of 2006, Macao’s economy rose 16.3% in real terms and 22.6% in nominal terms, accounting for a real growth of 17.7% and a nominal growth of 23.4% of the local

Population migration, the other factor in determining population growth, recorded an estimated inflow of 21 811 persons in 2005, including legal and illegal immigrants from

Since the assets in a pool are not affected by only one common factor, and each asset has different degrees of influence over that common factor, we generalize the one-factor

BIBW 2992 + vinorelbine 或 trastuzumab+vinorelbine 治療 先前曾用 trastuzumab 治療無效,且過量表現 HER2 之轉