• 沒有找到結果。

Nonreciprocal Phenomena in Chiral Materials - Left and Right in Quantum Dynamics –

N/A
N/A
Protected

Academic year: 2022

Share "Nonreciprocal Phenomena in Chiral Materials - Left and Right in Quantum Dynamics –"

Copied!
26
0
0

加載中.... (立即查看全文)

全文

(1)

Nonreciprocal Phenomena in Chiral Materials - Left and Right in Quantum Dynamics –

Naoto Nagaosa

RIKEN Center for Emergent Matter Science (CEMS) Dept. Applied Phys. Univ. Tokyoand

(2)

Collaborators

U.Tokyo: Ryohei Wakatsuki, Keita Hamamoto, Hiro Ishizuka, Motohiko Ezawa

Saitama Univ.: Shintaro Hoshino

Exp: Y. Tokura, Y. Iwasa, K.S. Takahashi, K. Yasuda, S. Koshikawa, S. Shimizu, Y. Kaneko, Y. Saito, T. Ideue, H. Yasuda, R. Yoshimi

(3)

Left and Right ( chirality ) is a crucial issue in sciences

From Wikipedia No Inversion I No Mirror M

Physics parity violation of weak interaction Chemistry chiral molecules

Biology chirality of DNA

M. Gardner, The Ambidextrous Universe. Left, Right and the Fall of Parity, Basic Books Inc. (1964)

(4)

http://quantumwise.com/

publications/tutorials/item /828‐silicon‐p‐n‐junction

http://www.optique‐ingenieur.org /en/courses/OPI_ang_M05_C02/

co/Contenu_09.html

Directional response is useful

pn junction optical isolator

(5)

V(x)

x

e

ikx

te

ikx

re

ikx

V(x)

x

e

ikx

e

ikx

t '

e

ikx

r'

2 2

| |

|'

| tt | r |'

2

 | r |

2

Fundamental viewpoint from physics Right and Left directions of flow

Incident from left

Incident from right

t t ' 

Unitary nature of S matrix: conservation of prob.

Time-reversal symmetry T: S=S^Transpose Role of dissipation and classical nature

(6)

Asymmetry between t and -t

1. Microscopic time-reversal symmetry breaking external magnetic field B

magnetic ordering M

2. Macroscopic irreversibility dissipation of energy

diffusion

(7)

Non-reciprocal transport in non-centrosymmetric system

R (+I) ≠ R (‐I) +I

‐I

R = R0 (1 + βB2 + γBI)

Broken inversion symmetry ⇔ γ ≠ 0

”dichroism” of the electric current magnetochiral anisotropy

) ,

, ( )

, ,

( kB    k   B

  Onsager’s reciprocal relation

for linear response Magnetochiral optical effect

directional dichroism



( k ,  , B )  

0

  kB I

k

G. L. J. A. Rikken (2001)

Nonlinear response

J   E   BE

2

e.g. electromagnon in multiferroics

A. Loidl, Y.Tokura

Time-reversal symmetry of microscopic dynamics vs irreversibility

(8)

K. Ishizaka et al. Nat. Mater. 10, 521 (2011).

Band structure in noncentrosymmetric crystal

) (

)

( k

k

Time-reversal symmetry

(9)

γ

T A

10

-3

10

-2

10

-1

G. L. J. A. Rikken et al.

PRL 87, 236602 (2001).

Bi helices Organics Si FET

F. Pop et al.

Nat. Commun. 5, 3757 (2014).

G. L. J. A. Rikken et al.

PRL 94, 016601 (2005).

I E B

Magnetochiral anisotropy – tiny effect

F SOI

B

B  

, 

R = R0 (1 + βB2 + γBI)

1 1

10

4

~ T

A

(10)

Enhanced magnetochiral anisotropy in BiTeBr

Y.Iwasa G, Y.Tokura G, NN G Nature Phys. 2017

(11)

2 2 λ

Magnetochiral anisotropy in Rashba model

⋅ 1 ⋯ ,

Boltzmann equation Expand in E

increasing Fermi energy

B

 diverges as n  0 is zero when two FSs coexist

is independent of  in the single relaxation time approx. like Hall coefficient

K. Hamamoto

(12)

A

 '  A

cross section of the sample No fitting parameters !

1

1

1

~ T

A

(13)

Chiral anomaly in Weyl semimetals

chemical potential difference in non-equilibrium steady state

B E B

J  (  )

 

5

negative magnetoresistance  due to chiral anomaly

X. Huang et al., PRX 2015

TaAs

K. Fukushima, D. Kharzeev

(14)

Weyl fermions in noncentrosymemtric semimetals

(15)

Magnetochial anisotropy in noncentrosymemtric Weyl semimetals

sec TaAs /

10 4

~

5

m

v  | 

|~ 10 meV

T. Morimoto, NN PRL2016

1

10

1

~ T

A

(16)

Giant enhancement of non-reciprocal response in superconductor

F SOI

B

SC

B

 ~ ,

Wakatsuki, Saito et al. Science Adv. 2017

(17)

Band structure and spin splitting in MoS2

(18)

ħ

2 3 ,

d

4 3

2 | | ,

93 5 28 3

16ħ 64

, 2

Paraconductivity due to SC fluctuation in noncentrosymmetric MoS2

(19)

400

Tc

(20)

S. Hoshino et al. 2018

(21)

S. Hoshino et al. 2018

Number of vortices Dissipative dynamcis of vortices

(22)

Ratchet motion of vortex and nonreciprocal transport

(23)

A quantum particle in periodic potential

http://www.natural‐science.or.jp/article/20180529143612.php

Quantum dissipation

by coupling to heat bath

(24)

RG study

dimensionless dissipation strength

duality

  1 / 

(25)

Linear Mobility

1

 

1

) 1 (

~ 2

)

(

T T

Fisher‐Zwerger PRB1985 Furusaki‐Nagaosa PRB1993 Kane‐Fisher PRB1992

(26)

-

Non-linear and non-reciprocal responses in nontrosymmetric systems contain rich physics

- Time-reversal symmetry breaking plays an important role - Magnetochiral anisotropy

- dissipation

- quantum-classical crossover

- duality between bosons and vortices Summary

Symmetry Quantum Geometry Electron Correlation Irreversibility

For a review see Y.Tokura, N.Nagaosa, Nature Communications 2018

參考文獻

相關文件

Curriculum planning - conduct holistic curriculum review and planning across year levels to ensure progressive development of students’ speaking skills in content, organisation

Therefore, it is our policy that no Managers/staff shall solicit or accept gifts, money or any other form of advantages in their course of duty respectively without the

O.K., let’s study chiral phase transition. Quark

Macro Evolution of core-collapse supernovae (giant P violation) Chiral kinetic theory. Son, Yamamoto (2012); Stephanov, Yin

Normalizable moduli (sets of on‐shell vacua in string theory) Scale

• Atomic, molecular, and optical systems provide powerful platforms to explore topological physics. • Ultracold gases are good for exploring many-particle and

Holographic dual to a chiral 2D CFT, with the same left central charge as in warped AdS/CFT, and non-vanishing left- and right-moving temperatures.. Provide another novel support to

In x 2 we describe a top-down construction approach for which prototype charge- qubit devices have been successfully fabricated (Dzurak et al. Array sites are de­ ned by