• 沒有找到結果。

第四章 結果與討論

4.6 單位發電量比較

以氣體燃料來進行發電量比較,本研究實場每立方米的沼氣可生 產 0.978 度的電力,如方程式 4.43 所示。

832,320 kwh

850,895 𝑚3 = 0.978 𝑘𝑤ℎ/𝑚3

(4.43) 天然氣每立方米可發電度數以天然氣熱量轉化進行計算。1m3天 然氣熱量為 8500kcal,一度電熱量是 860kcal,1 大卡等於 0.00418 兆 焦,1 瓦特為 1J/sec,1 度電=1kwh,平均轉換效率 40%,每 m3所生 產電力如方程式 4.44 所示。

(8500 kcal/𝑚3∗ 4180 J ∗ 1000

3600 ∗ 1000) ∗ 0.4 = 3.94 度

(4.44)

從上述牧場計算 1m3沼氣產電量為 0.978kwh 與 1m3天然氣產電 量 3.94kwh 相差約 3 倍,Talberg (2011)以天然氣為燃料,採用單循環 燃氣渦輪機之方式發電,其 CO2排放強度亦會高於 EPS 所規範之 500 g CO2 /kwh。故為符合標準,則需採用以天然氣為燃料之複循環燃氣 渦輪機,或是應用更先進之技術,在沼氣總產量不變的情形下提升沼 氣發電效率可降低損失,將沼氣作為燃料進行發電時,以能源局所提 供之能源原始單位排放係數 0.0010881 tons CO2 /m3計算該實場電力 排放係數為 1,110 g CO2/kwh,與 Talberg (2011)提供單循環與復循環 燃起渦輪機排放係數 370 ~ 620 g CO2/kwh 相比較高,原本所是用單 循環燃氣渦輪機排放系數為 620 g CO2/kwh,當提升至復循環燃氣渦 輪機時,電力排放系數從 620 g CO2/kwh 下降至 370 g CO2/kwh,這結 果顯示提升沼氣發電設備轉換效率對電力排放系數是具有影響力的。

當系統效率提升時,電力排放系數會明顯下降,但仍無法降至低 於 EPS 標準,此時則需要再投入 CCS 技術來降低探電力排放系數來 使排放系數更接近於標準值。因此在情境三納入計算時將土壤碳儲存 與電力取代做為可行性技術納入計算,沼氣電力排放系數將從 1.11 kg CO2/kwh 下降至 0.749 kg CO2/kwh,使排放係數更接近 EPS 所規範之 排放標準。因此本研究建議以提升沼氣發電設備提高轉換效率並結合

實場內碳儲存技術來增加單位沼氣的電力生產量,並可以降低二氧化 碳的排放。

第五章 結論

1. 沼氣發電的躉購電價單價比外購電力單價來的高,因此供應 三段式污水處理系統的運作仍然使用外購電力,即使純化塔 及發電機組已經透過沼氣發電自用,在外購電力上仍然造成 223 噸的二氧化碳當量排放。加總所有系統所排放的二氧化 碳為 1,064 tons,相當於最終電力碳足跡為 1.279 kg CO2-eq/kwh。

若將沼氣電力所產生的減碳效益納入評估,則總排放量為 620 tons CO2-eq,電力碳足跡為 0.749 kg CO2-eq/kwh。而使用能源 局所公告的排放係數作為沼氣燃燒排放依據總排放量為 925 tons,電力碳足跡為 1.11 kg CO2-eq/kwh。

2. 消化產物的回收使用使土壤中的碳含量大幅度增加,從相關 文獻進行數據彙整發現,消化產物作為肥料施作於土壤時,

可使土壤碳儲存的潛力增加。本研究以文獻數據進行推估實 場土壤碳儲存,實場投入消化產物施用所造成的土壤碳封存 為 224 ton CO2-eq,佔了總排放量的 21%,與文獻 341,858 ~ 470,388 ton /年的碳儲存相比本研究的結果較低,造成這結果 的原因可能是因為消化產物的投入量和消化產物的成份差異 所造成的影響。

3. 情境二與情境三所計算的沼氣電力碳足跡分別為 1.548 kg

CO2-eq/kwh、1.279 kg CO2-eq/kwh、1.11 kg CO2-eq/kw 及 0.749 kg CO2-eq/kwh,這四種電力碳足跡以 1.279 kg CO2-eq/kwh 最為接 近實際值,這是因為 1.548 kg CO2-eq/kwh 的電力碳足跡將土壤 碳儲存排除計算,1.11 kg CO2-eq/kwh 的碳足跡只考慮發電階 段,而 0.749 kg CO2-eq/kwh 的電力碳足跡由於將沼氣取代一 般電力所造成的減碳效益納入計算。一般而言電力效益是給 使用端而非電力供應端,所以在電力碳足跡的選擇使用上,

以 1.279 kg CO2-eq/kwh 較為接近實際值。

4. 沼氣主成分中的甲烷所造成全球暖化效應為二氧化碳的 25 倍,透過燃燒將 GWP 值從 25 轉化為 1 時,不僅可以減少溫 室氣體的排放並降低對環境的衝擊,還可以透過自願性減碳 專案(Voluntary Carbon Standard,VCS)獲取額外的碳權及額外 的經濟收益。在情境四以直接排放做為申請碳權的基線情境,

以能源局公告排放係數所計算總排碳量的收益最高,共新台 幣 10,425,160 元整,而以牧場實際值所計算總排放量收益新 台幣 10,220,446 元為最低。

5. 沼氣發電與天然氣發電相比,單位發電量差了 3 倍,這與發 電設備的轉化效率有關。本研究建議改善發電設備的轉換效 率,透過轉換效率的提升減少更多的二氧化碳排放,轉化效

率改成發電效率。

參考文獻

郭孟德和蕭庭訓 (2009) 沼氣利用技術及實例,畜牧半月刊,頁 53-59。

蕭士彬 (2015) 以厭氧消化程序處理養豬廢水效能評估之研究,中興 大學土木工程學系所,碩士論文。

邱素芳 (2003) 以高溫厭氧共消化有機廢棄物之研究,屏東科技大學 環境工程與科學系,碩士論文。

黃靜瑩 (2007) 以 Fe2O3/SiO3吸收劑高溫去除流化氫及硫化羰之研究,

國立成功大學環境工程學系,碩士論文。

陳玫佐 (2010) 生質沼氣發酵特性之研究,國立中央大學環境工程研 究所,碩士論文。

謝名雅 (2013) 以生命週期評估探討聚乳酸之碳足跡與毒性特性研 究,嘉南藥理科技大學環境工程與科學系,碩士論文。

魏佩如 (2010) 產品碳足跡計算不確定性分析之研究,國立台北大學 環境工程與管理研究所,碩士論文

行政院農委會畜產試驗所 (2015) 狼尾草及盤固草生產之碳消耗與 碳積蓄。

行政院環保署 (2017) 縣市層級溫室氣體盤查計算指引。

財團法人工業技術研究院 (2017) 農電雙贏政策論壇養豬場沼氣發 電成功案例分享。https://age.coa.gov.tw/index.php?theme=ws&id=2506931。

Akorede, M.F., Hizam, H., AbKadir, M.Z.A., Aris, I. and Buba, S.D. (2012) Mitigatingthe anthropogenic global warming in the electric power industry., Renew Sustain Energy Rev. pp. 2747-2761

Adams, P.W.R., Mezzullo, W.G. and McManus, M.C. (2015) Biomass sustainability criteria: Greenhouse gas accounting issues for biogas and biomethane facilities.Energy Policy Volume 87, Pages 95-109.

Ardolino, F., Parrillo, F. and Arena., U. (2018) Biowaste-to-biomethane or biowaste-to-energy? An LCA study on anaerobic digestion of organic waste. Journal of Cleaner Production. Volume 174, Pages 462-476 Buratti, C., Barbanera, M. and Fantozzi, F. (2013) Assessment of GHG

emissions of biomethane from energy cereal crops in Umbria. Applied Energy Volume 108, Pages 128-136.

Bentsen, N. S., Møller, I. M. (2017) Solar energy conserved in biomass:

sustainable bioenergy use and reduction of land use change Renew.

Sustain. Energy Rev. 71, pp. 954-958.

Boone, D. R. (1982). Terminal reactions in the anaerobic digestion of animal waste. Applied Environment Microbiology 43, 57-64.

Brentrup, F., Küsters, J., Lammel, J. and Kuhlmann, H. (2000) Methods to Estimate On-Field Nitrogen Emissions from Crop Production as an Input to LCA Studies in the Agricultural Sector. Hydro Agri, Research Centre Hanninghof, Hanninghof 35, D-48249 Dfilmen, Germany.

Boulamanti, A., Maglio, S. D., Giuntoli, J. and Agostini., A. (2013) Influence of different practices on biogas sustainability. Biomass and

Bioenergy, pp. 149-161.

Biograce (2014) Biograce II – Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass. Intelligent Energy Europe. Netherlands Enterprise Agency, Utrecht.

CAST. (2011). Carbon sequestration and greenhouse gas fluxes in agriculture: Challenges and opportunities. Task Force Report No.142.

Ames, IA: Council for Agricultural Science and Technology.

Fusi, A., Bacenetti, J., Fiala, M. and Azapagic, A. (2016) Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion

Guerrero, L. and Omil, F. (1999) Anaerobic Hydrolysis and Acidogenesis of Wastewater from Food Industries with High Content of Organic Solid and Protein., Wat. Res. Vol. 33. No.15. pp. 3281-3290.

Gujer, W. and Zehnder, A. J. B. (1983). Conversion processes in anaerobic bacteria. War. Sci. Tech 15, 127-167.

Gelfand, I., Sahajpal, R. and Zhang, X. (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature. 493, 514–

517.

Harasimowicz, M., Orluk, P., Zakrzewska-Trznadel, G. and Chmielewski, AG. (2007) Application of polyimide membranes for biogas purification and enrichment. Journal of Hazardous Materials.144, 698-702.

Ishikawa,S., Hoshibaa, S.,Hinatab,T., Hishinuma, T. and Morita, S. (2006) Evaluation of a biogas plant from life cycle assessment (LCA).

International Congress Series. Volume 1293, Pages 230-233.

biomass as a renewable source of biofuels — a review, Bioresources.

pp. 1879-1914

Ingrao, C., Rana, R., Tricase, C., Lombardi, M. (2015) Application of Carbon Footprint to an agro-biogas supply chain inSouthern Italy.

Applied Energy. Volume 149, Pages 75-88.

ISO 14040 (2006) INTERNATIONAL STANDARD

IPCCa (2006) Guidelines for National Greenhouse Gas Inventories IPCCb (2006) AR4 Climate Change : Synthesis Report

Joint Research Centre (2014) Solid and gaseous bioenergy pathways: input values and GHG emissions.JRC.

Solid and gaseous bioenergy pathways: input values and GHG emissions Kapdi, SS., Vijay VK., Rajesh, SK. and Prasad, R. (2005) Biogas scrubbing,

compression and storage: perspective and prospectus in Indian context. Renew Energ 30(8). 1195-1202.

Lantz, M., and Borjesson, P. (2014) Greenhouse gas and energy assessment of the biogas from co-digestion injected into the natural gas grid: A Swedish case-study including effects on soil properties Renewable Energy Volume 71, pp. 387-395

Liebetrau, J., Clemens, J., Cuhls, C., Hafermann, C., Friehe, J., Weiland, P.

and Daniel-Gromke, J. (2010) Methane emissions from biogas-producing facilities within the agricultural sector. Engineering in Life Sciences , pp. 595-599,

Lijó, L., González-García, S., Bacenetti, J., Fiala, M., Feijoo, G., Lema, J.

M., & Moreira, M. T. (2014) Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and

Maoa, G., Huang, N., Chen, L. and Wang, H. (2018) Research on biomass energy and environment from the past to the future: A bibliometric analysis. Science of The Total Environment. pp. 1081-1090.

Manninen, K., Koskelaa, S., Nuppunenb, A., Sorvaria, J., Nevalainenb, O.

and Siitonenb, S. (2013) The applicability of the renewable energy directive calculation to assess the sustainability of biogas production Energy Policy, 56 (2013), pp. 549-557.

Olumide, W A., Yaqian, Z., Ange, N., Doan, P M. and Nathalie, L. (2017) A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste and Biomass Valorization. Volume 8, Issue 2, pp 267–283

Paul, A., William, G. and Marcelle, M. (2015) Biomass sustainability criteria: Greenhouse gas accounting issues for biogas and biomethane facilities. Energy Policy. Volume 87, Pages 95-109

Paul, A., (2018) Chapter 9 - GHG Emissions From Biomethane Gas-to-Grid Injection via Anaerobic Digestion.Greenhouse Gas Balances of Bioenergy Systems, Pages 141-158.

Pal, B., Thomas, P., Mikael, L. and Lovisa, B. (2015) Energy Crop-Based Biogas as Vehicle Fuel—The Impact of Crop Selection on Energy Efficiency and Greenhouse Gas Performance. Energies.8, 6033-6058 Paustian, K. (2014) Soil: Carbon Sequestration in Agricultural Systems.

Encyclopedia of Agriculture and Food Systems. Pages 140-152

Rasi, S., Veijanen, A. and Rintala, J. (2007) Trace compounds of biogas from different biogas production plants. Energy. 32, 1375–1380.

Sawayama, S. and Inoue, S. (1997) Thermochemical Liquidization and

and Bioengineering. 83(5),451-455.

Syed, M., Soreanu, G., Falletta, P. and Béland, M. (2006) Removal of hydrogen sulfide from gas streams using biological processes - A review. Can Biosyst Eng 48, 2.1-2.14.

Su, JJ., Chen, YJ., Chang, YC. And Tang, SC. (2008) Isolation of sulfur oxidizers for desulfurizing biogas produced from anaerobic piggery wastewater treatment in Taiwan. Aust J Exp Agr. 48(1-2),193-197.

Schieder, D., Quicker, P., Schneider, R., Winter, H., Prechtl, S. and Faulstich, M. (2003) Microbiological removal of hydrogen sulfide from biogas by means of aseparate biofilter system: experience with technical operation. Water Sci Technol 48(4),209-212.

Thomas, P., Thomas, K. and Lovisa, B. (2017) Including a one-year grass ley increases soil organic carbon and decreases greenhouse gas emissions from cereal-dominated rotations e A Swedish farm case study. Biosystems Engineering. Volume 164, 200-212

The Guide to PAS 2050 : 2011

Thrän, D., Billig, E., Persson, T., Svensson, M., Daniel-Gromke, J., Ponitka, J., Seiffert, M., Baldwin, J., Kranzl, L., Schipfer, F., Matzenberger, J., Devriendt, N., Dumont, M., Dahl, J. and Bochmann, G. (2014) Biomethane – Status and Factors Affecting Market Development and Trade. IEA Task 40 and Task 37 Joint Study.

Talberg, A. and Nielson, L. 2011. Performance Standards to Reduce Energy Emissions. Department of Parliamentary Services, Parliament of Australia.

Yamada, K., Kamagata, Y. and Nakamura, K. (1997). The effect of endosymbiotic methanogens on the growth and metabolic profile of

the anaerobic free-living ciliate Trimyema compressum. FEMS Microbiology Letters. 149(1), 129-132.

107 學年度第 2 學期環工組口試初稿回覆意見對照表

Assessment of carbon emission reduction of a swine farm by life cycle analysis

老師問題與建議 學生回覆

老師問題與建議 學生回覆 一樣的,將消化產物所造成的碳儲存納入

進量引響會很大,但那只是推估,並非實 際測量出來,且應該要把有沒有使用消化 產 物 分 開 來 講 , P.37 的 圖 比 較 像 是 把 14064-1 和 14064-2 混在一起講。

物所造成的減排效益分開來描述,讓有使 用消化產物跟沒使用消化產物的影響從 圖上觀看較為明顯。

相關文件