• 沒有找到結果。

第五章 結論與建議

5.2 建議

由於蜿蜒複式河槽所牽連之相關因素極為複雜,因此本研究不盡完備 處或可再深入探討之方向,將陳列如下以供日後參考:

1. CCHE2D 模式之二次流機制僅由平均河寬此單一值來推估,應用在 有寬窄變化、曲率半徑不同的現地河川時可能過於簡略,為模式較 不足之處。

120

2. 在設定岸壁沖刷模組中的岸壁臨界剪應力值為重要參數之一,其原 始理論是由土壤特性的鈉吸附比、孔隙流體鹽類濃度和電界質擴散 來決定,但這些參數取得不易,是否有更簡便的方式可以決定岸壁 臨界剪應力值可再研究。

3. 本研究之實驗室案例皆為定量流且單一粒徑的河床質組成,之後可 增加其他如變量流、不同級配組成之河床質、變動的底床坡度、有 寬窄變化的洪水平原及主深槽等等變因,更加深入了解彼此的關 聯。

4. 蜿蜒複式河槽之主深槽和洪水平原交界處流場變化劇烈,渠道剖面 不為方正矩形,糙度係數的推估比一般情況較為複雜,在數值模擬 上如何設定糙度係數,將實驗成果應用在數值模擬,讓數值模擬能 更符合實際情形仍是有待研究。

5. 複式河槽因垂直方向有地形變化,水理特性會隨水深不同而變化,

此種特性可用有考慮垂直方向變化的三維數值模式進行模擬。而應 用在現場案例時,若是能更精確的掌握深槽地形資料及高灘地的地 質、土地利用、植生狀況等,將會增強模擬的實用性。

6. 本研究為二維水深平均模式應用於蜿蜒複式河槽的模擬結果。對於 颱洪期間洪水漫淹至洪水平原後,水流挾帶的泥砂量、水流對於主 深槽及兩岸高灘地的影響等均須加強現場觀測資料,可提供數值模 擬改進的方向。

121

參考文獻

1. Ackers, P. and White, W.R. (1973). “Sediment transport: A new approach and analysis.” J. of Hydraulics Division, ASCE, 99(HY11),.2041-2060.

2. Alonso, C. V., and Combs, S. T. (1986). “Channel width adjustment in straight alluvial streams.” Proc., 4

th

Fed. Interagency Sedim entation Conf., U. S. GPO, Washington, D. C., 5-31-5-40.

3. Borah, D. K., and Bordoloi, P. K. (1989). “Stream bank erosion and bed evolution model.” Sediment Transport Modeling, S. Wnag, ed., ASCE, New York, N. Y., 612-619.

4. Brownlie, W.R. (1981). “Compilation of fluvial channel data: laboratory and field.” Rep. No. KH-R-43B, W.M. Keck Lab. of Hydr. and Water Resources, California Institute of Technology, Pasadena, Calif.

5. Bui Minh Duc, Wenka T., and Rodi W. (2004). “Numerical modeling of bed deformation in laboratory channels.” J. Hydr. Engrg., ASCE, 130(9). 894- 904.

6. Darby, S. E., Alabyan, A. E., and Van de Wiel, M. J. (2002).

“Numericalsimulation of bank erosion and channel migration in meandering rivers.” Water Resource Research, 38(9). 1163.

7. Darby, S. E., and Thorne, C. R. (1996). “Numerical simulation o widening and bed deformation of straight sand-bed rivers.” Earth Surface Process and Landforms, 21, 1109-1125.

8. Duc, B.M., Wenka, T., and Rodi, W. (2004). “Numerical modeling of bed deformation in laboratory channels.” Journal of Hydraulic Engineering, 130(9): 894 – 904.

9. Engelund F. (1974). “Flow and bed topography in channel bends.” J. Hydr.

Engrg., ASCE, 100(11), 1631- 1648.

10. Ervine, D. A., Willets, B. B., Sellin, R. H. J., and Lorena, M. (1993).

“Factors affecting conveyance in meandering compound flows.” J. Hydraul.

Eng., 119(12), 1383-1399.

122

11. Gang Zhao (2007). “Numerical simulation of complex channel flows.”

Ph.D. Thesis, Univ. of Stanford, Calif, USA.

12. Gessler, D., Hall, B., Spasojevic, M., Holly, F., Pourtaheri, H., and Raphelt, N. (1999). “Application of 3D mobile bed, hydrodynamic model.” Journal of Hydraulic Engineering, 125(7): 737 – 749.

13. Greenhill, R. K., and Sellin, R. H. J. (1993). “Development of a simple method to predict discharges in compound meandering channels.” Proc. I.

C. E., Water Maritime and Energy, 101(1), 37-44.

14. Hanson, G.J., and A. Simon. (2001). “Erodibility of cohesive streambeds in the loess area of the Midwestern USA.”. Hydrological Progresses 15(1):

23-38.

15. Hideo Kikkawa, Syunsuke Ikeda, and Akira Kitagawa. (1976). “Flow and bed topography in curved open channels.” J. Hydr. Engrg., ASCE, 102(9), 1327- 1342.

16. HR Wallingford (1990). ”Sediment transport, the Ackers and White theory revised.” Report SR237, HR Wallingford, England.

17. Jang, C.-L. and Shimizu, Y. (2005). “Numerical simulation of relatively wide, shallow channels with erodible banks.” J. Hydr. Engrg., ASCE, 131(7), 565~575.

18. Jia DD, Shao XJ, Wang H, et al. (2010). “Three-dimensional modeling of bank erosion and morphological changes in the Shishou bend of the middle Yangtze River.” Advances in Water Resources, Vol 33, 348-360.

19. Jia, Y and Wang, S.S.Y. (1999). “Numerical model for channel flow and morphological change studies”, J. Hydraul. Eng., ASCE, 125(9), 924-933.

20. Jia, Y., Wang, S., (2001a). “CCHE2D: two-dimensional hydrodynamic and sediment transport model for unsteady open channel Flows over loose bed.”

National Center for Computational Hydroscience and Engineering.

Technical Report No. NCCHE-TR-2001-1, February.

21. Jia, Y., Wang, S., (2001b). “CCHE2D verification and validation tests documentation.” National Center for Computational Hydroscience and

123

Engineering. Technical Report No. NCCHE-TR-2001-2, August.

22. Jia, Y., Wang, S.Y.Y., and Xu, Y. (2002). "Validation and application of a 2D model to channels with complex geometry", International Journal of Computational Engineering Science, 3(1) (March 2002), 57-71.

23. Jia, Y., Y., Zhang and S.S.Y., Wang, (2008). “Numerical modeling of bank erosion processes and its field application”, Proceedings of the International Conference of Hydroscience and Engineering, Nagoya, Japan, September, 9-12, 2008.

24. Kassem, A.A., and Chaudhry, M.H. (2002). “Numerical modeling of bed evolution in channel bends.” Journal of Hydraulic Engineering, 128(5):

507 – 514.

25. Kovacs, A. E. and Parker, G. (1994). “A new vectorial bedload formulation and its application to the time evolution of straight river channels.” J. Fluid Mech., 267, 153-183.

26. Lauer, J.W., and Parker G. (2004). “Modeling channel-floodplain co-evolution in sand-bed streams.” ASCE World Water and Environmental Resources 2004 Congress, Salt Lake City, June 27-July 1.

27. Laursen, E. (1958). “The total sediment load of streams.” J. of Hydraulics Division, ASCE, 84 (1), 1530-1–1530-36.

28. Li, L. and Wang, S. S. Y. (1994). “Computational simulation of channel back erosion and retreat.” Tech. Rep., CCHE, Univ. of Mississippi, Oxford, Miss.

29. Li, L., and Wang, S. S. Y. (1993). “Numerical modeling of alluvial stream bank erosion.” Advances in hydro-science and engineering, S. S. Y. Wang, ed., University of Mississippi, Oxford, Miss., Vol. 1, 2085-2090.

30. Lorena, M. L. (1992). “Meandering compound flow.’’ PhD thesis, University of Glasgow, Glasgow, U.K.

31. Mckeogh, E. J. and Kiely, G. K., (1989). “Experimental study of the mechanisms of flood flow in meandering channel.” Proceedings of the 23

rd

IAHR Congress, Ottawa, Canada, Vol. B, 491-498.

124

32. Meyer-Peter, E. and Mueller, R. (1948). “Formulas for bed-load transport.”

Report on Second Meeting of IAHR, Stockholm, Sweden, 39-64.

33. Mosselman, E. (1992). “Mathematical modeling of morphological processes in rivers with erodible cohesive banks.” Ph.D. thesis, Delft Univ.

of Technol., Delft, The Netherlands.

34. Nagata, N., Hosoda, T., and Muramoto, Y. (2000). “Numerical analysis of river channel processes with bank erosion.” J. Hydr. Engrg., ASCE, 126(4), 243–252.

35. Odgaard, A. J. (1986a). “Meander flow model. I: Development.” J. Hydr.

Div., ASCE, 112(12), 1117- 1136.

36. Odgaard, A. J. (1986b). “Meander flow model. II: Applications.” J. Hydr.

Div., ASCE, 112(12), 1117- 1136.

37. Osman, A. M. and Thorne, C. R. (1988a). “Riverbank stability analysis, I:

Theory,” J. Hydraulic Eng., ASCE, 114(2), 134–150.

38. Osman, A. M. and Thorne, C. R. (1988b). “Riverbank stability analysis, II:

Application,” J. Hydraulic Eng., ASCE, 114(2), 151-172.

39. Partheniades, E. (1965). ”Erosion and deposition of cohesive soils” J. of Hydraulic Division, ASCE, 91 (1), 105–139.

40. Pizzuto, J. E. (1990). “Numerical simulation of gravel river widening.”

Water Resource Research, 26, 1971-1980.

41. Proffit, G.T. and Sutherland., A.J. (1983). ”Transport of nonuniform sediment.” J. of Hydraulic Research, Vol.21, No.1, 33-43.

42. Rahman, M. M., Nagata, N., and Murata, H. (1997). ‘‘Plan form variation of meandering channels with bank erosion.’’ Proc., 52

th

Annu. Conf. JSCE, Japan Society of Civil Engineers, Tokyo, 2, 506–507.

43. Ruther, N., and Olsen, N.R.B. (2005). “Three-dimensional modeling of sediment transport in a narrow 90-degree bend.” Journal of Hydraulic Engineering, 131(10): 917 – 920.

44. Shimizu Y. and Itakura T. (1989). “Calculation of bed variation in alluvial

125

channels.” J. Hydr. Engrg., ASCE, 115(3), 367- 384.

45. Shimizu, Y., Yamaguchi, H., and Itakura, T. (1990). “Three-dimensional computation of flow and bed deformation.” Journal of Hydraulic Engineering, 116(9): 1090 – 1108. doi:10.1061/(ASCE)0733-9429 (1990)116:9(1090).

46. Shiono, K., and Muto, Y., (1993). “Secondary flow structure for inbank and overbank flows in trapezoidal meandering channels.” Proc., 5

th

Int. Symp.

Of Refined flow Modl. and Turb. Measu., Paris (september), 645-652.

47. Shiono, K., Muto, Y., Imamoto, H., and Ishigaki, T. (1994). “Flow structure in meandering compound channel for overbank.” Proc. 7

th

Intl Symp., Application of Laser to Fluid Mechanics, 10-14 July, P. 28.2.1-28.2.8.

Lisbon, Portugal.

48. Shiono, K., and Muto, Y., (1998). “Complex flow mechanisms in compound meandering channels with overbank flow.” J. Fluid Mech., vol.

376, 221-261.

49. Simons, A., Wolfe, W. J., and Molinas, A. (1991). “Mass wasting algorithm in an alluvial channel model.” Proc., 5

th

Fed. Interagency Sedimentation Conf., U. S. GPO, Washington, D. C., 8-22-8-29.

50. Smith, C. D. (1978). “Effect of channel meanders on flood stage in valley.”

J. Hydraul. Div., Proc. ASCE, Vol.104, No.HY1, 49-58.

51. Struiksma, N. (1983). “Results of movable bed experiments in the DHL curved flume.” Report on Experimental Investigation, Two Rep.

No.R657-XVIII/ M1771, Delft Hydraulics Laboratory, Delft, Netherlands.

52. Struiksma, N. (1985). “Prediction of 2D bed topography in rivers.” J. Hydr.

Engrg., ASCE, 111(8), 1169- 1182.

53. Struiksma, N., Olesen K. W., Flokstra, C., and de Vriend, H. J. (1985).

“Bed deformation in curved alluvial channels.” J. Hydr. Res., 23(1),57 - 79.

54. Sun, T., Meakin, P., and Jossang, T. (2001a). “A computer model formeandering rivers with multiple bed load sediment sized, 1, Theory.”

Water Resource Research, 37(8), 2227-2241.

126

55. Sun, T., Meakin, P., and Jossang, T. (2001b). “A computer model for meandering rivers with multiple bed load sediment sized, 2, Computer simulations.” Water Resour. Res., 37(8), 2243-2258.

56. Sutmuller, A. M., and Glerum, H. L. (1980). “Description and Evaluation of Measurements Carried out in a Bend Flume with Sand Bend.” Rep. No.

14710101, Delft University of Technology, Dept. of Civil Engineering, Delft, The Netherlands.

57. Toebes, G. H., and Sooky, A. A. (1967). “Hydraulics of meandering rivers with flood plains.” Journal of the Waterways and Harbours Division American Society of Civil Engineers 93, 213-236.

58. Toffaleti, F.B. (1968). “A procedure for computation of the total river sand discharge and detailed distribution, bed to surface.”” Technical Report No.5, US Army Corps of Engineers, Vicksburg, Miss.

59. Usman Ghani (2010). “Investigation of various sediment and flow parameters upon three dimensional flow using numerical model.” Ph.D.

Thesis, University of Engineering & Technology, Taxila, Taxila.

60. Wang, G., Xia, J., and Wu, B. (2008). “Numerical simulation of longitudinal and lateral channel deformations in the braided reach of the lower Yellow River.” J. Hydr. Engrg., ASCE, Vol. 134, No. 8, 1064-1078.

61. Wiele, S. M. (1992). “A computational investigation of bank erosion and midchannel bar formation in gravel-bed rivers.” Ph.D. thesis, Univ. of Minnesota, Minneapolis, Minn.

62. Willetts, B. B., and Hardwick, R. I. (1993). “Stage dependency for overbak flow in meandering channels.” Proc. Insitute of civil Engineers water Maritime and Energy, 101, P.45-54.

63. Wormleaton, P.R., Sellin, R.H.J., Bryant, T., Loveless, J.H., Hey, R.D. and Catmur, S.E. (2004). “Flow structures in a two-stage channel with a mobile bed.” J. Hydraul. Res., 42, 145–162.

64. Wu, W., and Wang, S. S.Y. (1999). “Movable bed roughness in alluvial rivers.” J. Hydr. Eng., ASCE, 125(12), 1309-1312.

127

65. Wu, W., Rodi, W., and Wenka, T. (2000). “3D Numerical modeling of flow and sediment transport in open channels.” J. Hydraul. Eng., 126(1), 4–15.

doi:10.1061/(ASCE)0733-9429(2000)126:1(4).

66. Wu, W., Wang, S.S.Y., and Jia, Y. (2000). “Nonuniform sediment transport in alluvial rivers.” J. Hydr. Res., IAHR, 38(6), 427-434.

67. Wu, W.M. (2001) “CCHE2D sediment transport model”, Technical Report No. NCCHE-TR-2001-3, National Center for Computational Hydroscience and Engineering, The University of Mississippi.

68. Wu, W. and Wang, S.S.Y. (2003). “Selection and evaluation of nonuniform sediment transport formulas for river modeling.” Proc. XXX

th

IAHR Congress, Thessaloniki, Greece.

69. Wu, W. and Wang, S. S. Y. (2004a). “Depth-averaged 2-D calculation of flow and sediment transport in curved channels,” Int. J. Sediment Res., 19(4), 241–257.

70. Wu, W. and Wang, S. S. Y. (2004b). “Depth-averaged 2-D calculation of tidal flow, salinity and cohesive sediment transport in estuaries,” Intl. J.

Sediment Res., 19(3), 172–190.

71. Yang, C.T. (1973). “Incipient motion and sediment transport” J. of Hydraulics Division, ASCE, 99(HY10), 1679-1704.

72. Yeh, K. C., and Kennedy J. F. (1993). “Moment model of nonuniform channel-bend flow. II: erodible beds.” J. Hydr. Engrg., ASCE, 119(7), 796- 815.

73. Yen, C. L. and Lee, K. T. (1995). “Bed topography and sediment sorting in channel bend with unsteady flow,” J. Hydraulic Eng., ASCE, 121(8), 591–599.

74. Zeng, J., Constantinescu, G., Webber, L. (2008). “A 3D nonhydrostatic model to predict flow and sediment transport in loose-bed channel bends.” J.

Hydr. Res. 46(3), 356–372.

75. 連和政(1999),「二維水深平均模式應用於彎道水流與泥沙運移模擬之 研究」,國立交通大學土木工程學系博士論文,台灣新竹。

128

76. 許至璁(2002),「二維有限解析法明渠水理與輸砂模式之研發與應用」,

國立交通大學土木工程學系博士論文,台灣新竹。

77. 李振豪(2006),「蜿蜒複式斷面水流水理特性之研究」,國立嘉義大學土 木與水資源工程學系學系碩士論文,台灣嘉義。

78. 姜志學(2008),「粗糙洪水平原之蜿蜒複式斷面水流特性之研究」,國立 嘉義大學土木與水資源工程學系學系碩士論文,台灣嘉義。

79. 張益家(2005),「二維彎道動床模式之發展研究」,國立交通大學土木工 程學系碩士論文,台灣新竹。

80. 李懷恩(2007),「深槽蜿蜒之複式斷面直渠之水理研究」,國立成功大學 水利及海洋工程學系碩士論文,台灣台南。

81. 姜世偉(2011),「河岸退縮數值計算模式之發展與應用」,國立交通大學 土木工程學系博士論文,台灣新竹。

82. 李懷恩(2007),「深槽蜿蜒之複式斷面直渠之水理研究」,國立成功大學 水利及海洋工程學系碩士論文,台灣台南。

83. 經濟部水利署水利規劃試驗所(2009),「美國國家計算水科學及工程中 心河道變遷模式之引進及應用研究」,台灣台中。

84. 經濟部水利署第六河川局(2007),「曾文溪及鹽水溪河床變動與防洪分 析研究」,台灣嘉義。

85. 經濟部水利署水利規劃試驗所(2012),「深槽流量增加對河床沖刷與河 道變遷之影響(2/2)」,台灣台中。

86. 經濟部水利署水利規劃試驗所(2010),「曾文溪治理規劃檢討-水文分 析」,水規所,台灣台中。

相關文件