• 沒有找到結果。

第五章 結論與建議

第二節 建議

根據本研究之研究過程及結論,提出以下建議,期盼能提供教師教學與後續研究者 一些參考。

一、對教學與教材設計上的建議

本研究針對氣體分子動力論設計網路多媒體課程,以表徵連接的方式促進學生對概 念全面理解,學生在學習後概念顯著提升,也提升多重表徵問題解決的能力。根據腦波 資料,學生在課程中的微觀分子運動表徵片段需花費較大的腦波功率強度及較多的腦區 連結,與公式符號或圖表表徵出現後的表徵連接片段達顯著差異。本研究之多媒體課程 能補強課室教學較難具體呈現的氣體分子運動狀態,而成功促進學生對微觀表徵的理 解,且更加強理解原本已知的公式表徵,因此課室教學之教師需思量整個科學概念抽 象、微觀與動態過程之特性,在教學設計上設法讓抽象成為具體,讓不可見變為可見,

協助學生得以觀察念發生之過程,才能幫助學生建構特定的化學概念。

二、對未來研究的建議

本研究結果顯示針對氣體分子動力論所設計之網路多媒體課程,使學生建立表徵轉 換能力,且透過表徵連接概念建構歷程之腦波資料分析,可探知學生在建構概念歷程中 的腦波狀態,顯示腦電圖應用於科學教育上概念建構歷程之研究確然可行,也期望未來 能有更多相關研究投入,以能更明瞭學生在科學概念建構過程中的大腦運作模式。

但由於本研究受限於人力與時間,在取樣與分析上均有未臻完善之處,僅以以下幾 點建議,期待後續之研究能加以參酌,讓科學教育相關研究亦能結合認知神經科學、認 知心理學之研究,以進一步瞭解學生在建構科學概念正程中如何進行訊息處理,進行協 助學生之科學學習。

(一)本研究所施測之受試者為新竹和彰化兩所高中之八十三位高二學生,但僅有新竹 的高中學生參與腦波受試,且概念建構內容設計僅針對氣體動力論單元,建議未 來研究者可更擴大施測對象及針對不同的科學課程進行設計,以期明瞭學生在科 學學習中之認知歷程是否有其通則性。

(二)本研究未能進行四個主題之腦波記錄,僅記錄微觀、公式和圖表之概念建構歷 程,未來若能增加巨觀實驗之腦波記錄,能更瞭解學生在此概念之建構歷程。

(三)本研究並未進行腦波變化之追蹤研究,未來若能考量增加受試者之追蹤測,或許 能對概念改變之歷程及其成效,以及長期記憶之運作模式有更進一步的瞭解。

(四)本研究以概念建構理論為主軸,探用多媒體網路課程方式進行施測,未來或可將 腦電圖之研究應用於更多科學學習層面,如結合學生之科學實作、科學讀寫、科 學問題解決等,以期對學生的科學學習提供不同角度之思維。

參考文獻

中文部分

王甦、江安圣(2001)。認知心理學。北京:北京大學出版社。

吳佳玲(2001)。影響高一學生地球科學問題解決能力之相關變項探討。國立台灣師範 大學地球科學研究所碩士論文(未出版)。

吳清山(2001)。問題導向學習。教育研究月刊,97,120。

李玉琇和蔣文祁(合譯)(2005)。認知心理學(Cognitive psychology 3 E)。台北市:

雙葉。

李素卿(譯)(2003)。M. W. Eysenck & M. Keane 著。認知心理學(Cognitive Psychology A Student’s Handbook)。台北市:五南。

李震甌(2002)。高低學習成就學童科學問題解決能力之比較研究。國立屏東師範學院 數理教育研究所碩士論文(未出版)。

洪文東(2000)。從問題解決的過程培養學生的科學創造力。屏師科學教育,11,52-62。

洪文東(2001)。從問題解決的過程培養學生的科學創造力:化學學習活動模組與教學 活動設計(I)。行政院國家科學委員會專題研究成果報告:C89-2519-S-153-006。

屏東縣:國立屏東師範學院自然科學教育學系。

洪文東、李震甌(2001)。從科學問題的解決看創造思考的研究。屏師科學教育,14, 46-59。

洪榮昭(1997)。問題解決的思考模式。技術問題解決能力發展研究研習會報告資料。 台北:台灣師範大學。

陳怡仁(2007)。應用數位化雙重情境學習課程探討多媒體呈現形式對國中學生遺傳概 念建構之影響。新竹市:國立交通大學教育研究所碩士論文(未出版)。

教育部、國科會(2002)。科學教育白皮書。台北市:教育部。

張春興(1989)。張氏心理學辭典。台北:東華書局。

張春興(1996)。教育心理學。台北:東華書局。

張春興(1999)。教育心理學(修訂14 版)。台北市:東華書局。

游文楓、佘曉清(2006)。網路化問題解決教學策略對學生生物學習成效的影響。科學 教育學刊,14(4), 381-400。

黃茂在、陳文典(2004)。「問題解決」的能力。科學素養的內涵與解析。台北:教育 部。

黃萬居(2002)。九十年度【科學概念學習研究(II)】-化學科-子計畫六:台灣地區 國小學生酸鹼概念之研究(II)。行政院國家科學委員會專題研究成果報告:

NSC90-2511-S-133-006。台北市:台北市立師範學院數理教育研究所。

國立編譯館 (1987)。高中化學。台北市:國立編譯館。

英文部分

Anderson, J. R. (2000). Cognitive psychology and its implication5th ed.).New York: Worth.

Ardac, D. (2002). Solving quantum number problems: An examination of novice

performance in terms of conceptual base requirements. Journal of Chemical Education, 79(4), 510-513.

Baddeley, A. D. (2002). Is working memory still working? European Psychologist, 7(2), 85-97.

BouJaoude, S., Salloum, S., & Abd-El-Khalick, F. (2004). Relationships between selective cognitive variables and students’ ability to solve chemistry problems. International Journal of Science Education, 26(1), 63-84.

Bransford, J. D., & Stein, B. S. (1984). The ideal problem solver. New York: W. H. freeman and company.

Brook, A., Briggs, H., & Driver, R. (1984). Aspects of secondary students’ understanding of the particulate nature of matter. Leeds: Children’s learning in science project. Centre for Studies in Science and Mathematics Education, University of Leeds.

Burewicz, A., & Miranowicz, N. (2001). Categorization of visualization tools in aspects of

chemical research and education. International Journal of Quantum Chemistry, 88, 549-563.

Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2007). The development of a two-tier multiple-choice diagnostic instrument for evaluating secondary school students’

ability to describe and explain chemical reactions using multiple levels of representation.

Chemistry Education Research and Practice, 8(3), 293-307.

Chiu, M. H. (2001). Performance on problem solving and conceptual learning in chemistry by high school students in Taiwan. Science and Technology Education, 11(1), 20-38.

Chittleborough, G., & Treagust, D. F. (2007). The modeling ability of non-major chemistry students and their understanding of the sub-microscopic level. Chemistry Education Research and Practice, 8(3), 274-292.

Chang, C. Y., & Barufaldi, J. P. (1999). The use of a problem-solving-based instructional model in iniating change in students’ achievement and alternative frameworks.

International Journal of Science Education, 21(4), 373-388.

Chang, C. Y., & Weng, Y. H. (2002). An exploratory study on students' problem-solving ability in earth science. International Journal of Science Education 24(5), 441-451.

Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90, 1071-1091.

Dewey, J. (1910). How We Think. Boston: D. C. Heath.

Doch, D., & Holcomb, P. J. (2003). The N400 in beginning readers. Dev Psychobiol, 43, 146-166.

Driver, R. (1989). Students’ conceptions and the learning of science. International Journal of Science Education, 11, 481-490.

Ferk, V., Vrtacnik, M., & Gril, A. (2003). Students’ understanding of molecular structure representations. International Journal of Science Education, 25, 1227-1245.

Fox, S. I. (2002). Human Physiology (7E). America: McGraw-Hill impress.

Fitzgibbon, S. P., Pope, K. J., Mackenzie, L., Clark, C. R., & Willoughby, J. O. (2004).

Cognitive tasks augment gamma EEG power. Clinical Neurophysiology, 115, 1802-1809.

Gabel, D. L., Samuel, K. V., & Hunn, D. (1987). Understanding the particulate nature of matter. Journal of Chemical Education, 64, 695–697.

Gagne, E.D.(1985). The cognitive psychology of school learning. Boston:Lettle, Brown and Company.

Göker, M. H. (1997). The effects of experience during design problem solving. Design Studies, 18(4), 405-426

Goldstein, E. B. (2005). Cognitive psychology. USA: Thomson Wadsworth.

Haarmann, H. J., & Cameron, K. A. (2005). Active maintenance of sentence meaning in working memory: Evidence from EEG coherences. International Journal of

Psychophysiology, 57, 115-128.

Hayes, J. R. (1981). The complete problem solver. Philadelphia: The Franklin Institute Press.

Heppert, J., Ellis, J., Robinson, J., Wolfe, A., & Mason, S. (2002). Problem solving in the chemistry laboratory: A pilot project to reform science teaching and learning. Journal of College Science Teaching, 31(5), 322-326.

Jaušovec, N . (1996). Differences in EEG alpha activity related to giftedness. Intelligence, 23(3), 159

Jaušovec, N., & Jaušovec, K. (2000). EEG activity during the performance of complex mental problems. International Journal of Psychophysiology, 36(1), 73-88.

Jaušovec, N. (2000b). Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: An EEG study. Intelligence, 28(3), 213-237

Jin, S. (2006). Differences in brain information transmission between gifted and normal

children during scientific hypothesis generation. Brain and Cognition, 62(3), 191-197.

Johnson-Laird, P. N. (1983). Mental models. Great Britain: Harvard university press.

Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem.

Journal of computer assisted learning, 7(2), 75-83.

Johnstone, A. H. (1993). The development of chemistry teaching. Journal of Chemical Education,70, 701–705.

Jonassen, D. H. (1997). Instructional design models for well-structured and ill-structured problem-solving learning outcomes. Educational Technology: Research and Development, 45(1), 65-94.

Kahney, Hank. (1986). Problem solving - A cognitive approach. Milton Keynes: Open University Press.

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Review, 29, 169-195.

Klimesch, W., Doppelmayr, M., Pachinger, T., & Ripper, B. (1997). Brain oscillations and human memory: EEG correlates in the upper alpha and theta band. Neuroscience Letters, 238(1-2), 9-12.

Klimesch, W., Sauseng, P., & Hanslmayr, S. (2006). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53, 63-88.

Lovett, M. C. (2002). Problem Solving. Problem Solving. In H. Pashler, & D. Medin (Eds.) Stevens’ Handbook of Experimental Psychology. (pp.317-362). New York: Wiley.

Lamm, L., Jischmeister F. Ph, S., & Bauer, H. (2008). Linking performance with brain potentials: Mental rotation-related negativity revisited. Cognitive Brain Research, 25, 900-912.

Lin, H. S., & Chiu, H. L. (2004). Student understanding of nature and their problem-solving strategies. International Journal of Science Education, 26(1), 101-112.

Luck, S. J. (2005). An introduction to the event-related potential technique. MIT press.

Mason, D. S., Shell, D. F., & Crawley, F. E. (1997). Differences in problem solving by nonscience majors in introductory chemistry on paired algorithmic-conceptual problems.

Journal of Research in Science Teaching. 34(9), 905-923.

Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52.

Meltzer, D. E. (2005). Relation between students’ problem-solving performance and representational format. American Association of Physics Teachers, 73, 463-478.

Nakhleh, M. B. (1993). Are Our Students Conceptual Thinkers or Algorithmic Problem Solvers? Identifying Conceptual Students in General Chemistry. Chemical Education, 70(1), 52-55.

Nakhleh, M. B., & Mitchell, R. C. J. (1993). Concept Learning versus Problem Solving:

There is a Difference, 70(3), 190-192.

Newell, A. (1990). Unified Theories of Cognition. Harvard University press.

Newell, A., & Simon, H. (1972). Human Problem Solving. Englewood Cliffs, NJ:

Prentice-Hall.

Niaz, M., & Robinson, W. R. (1992). “Manipulation of logical structure of chemistry problems and its effect on student performance.” Journal of Research in Science Teaching, 29, 211-226.

Noh, T., & Scharmann, L. C. (1997). Instructional influence of a molecular-level pictorial presentation of matter on students’ conceptions and problem-solving ability. Journal of Research in Science Teaching, 34(2), 199-217.

OECD (2003). The PISA 2003 assessment framework- mathematics, reading, science and problem solving knowledge and skills. OECD, Paris, France.

Osborne, R., & Freyberg, P. (1985). Learning in Science: The implication of children’s science (Auckland: Heinemann).

Palva, S., & Palva, J. M. (2007). New vistas for α-frequency band oscillations. Trends in

Neurosciences, 30(4), 150-158.

Paivio, A (1986). Mental representations: a dual coding approach. Oxford. England:

Oxford University Press.

Perner, J. (1991). Understanding the representational mind. Cambridge, MA: MIT Press.

Penner, D. E. (2000). Explaining systems: Investigating middle school students’

understanding of emergent phenomena. Journal of research in science teaching, 37(8), 784-806.

Pitt, D. (2004). Mental representation. Stanford Encyclopedia of Philosophy, from the World Wide Web: http://plato.stanford.edu/entries/mental-representation/

Posner, M., Sheese, B. E., Odludas, Y., & Tang, Y. (2006). Analyzing and shaping juman attentional networks. Neural Networks, 19, 1422-1429.

Rappoport, L. T., & Ashkenazi, G. (2008). Connecting levels of representation: emergent versus submergent perspective. International Journal of Science Education, 30(12), 1585-1603.

Riecansky, I., & Jagla, F. (2008). Linking performance with brain potentials: Mental rotation-rolated negativity revisited. Neuropshchologia,46, 3069-3073.

She, H. C. (2002). Concepts of a higher hierarchical level require more dual situated learning events for conceptual change: A study of air pressure and buoyancy. International Journal of Science Education, 24(9), 981-996.

Shin, N., Jonassin, D. H., & McGee, S. (2003). Predictor of well-structured and ill-structured problem solving in an astronomy simulation. Journal of Research in Science Teaching, 40(1), 6-33.

Simon, H. A. (1979). Information-processing theory of human problem solving. In W.K.

Estes (Ed.), Handbook of learning and cognitive processes (pp. 271-295). Hillsdale, NJ:

Erlbaum.

Solso, R. L., MacLin, M. K., & MacLin, O. H. (2005). Cognitive psychology7th ed.). Boston:

Allyn & Bacon Press.

Sternberg, R. J. (2003). Cognitive psychology 3E. C. A. Thomson press.

Sternberg, R. J. & Ben-Zeev, T. (2001). Complex Cognitive. New York: Oxford University Press.

Stieff, M. (2007). Mental rotation and diagrammatic reasoning in science. Learning and Instruction. 17, 219-234.

Sewards, T. V., & Sewards M. A. (1999). Alpha-band oscillations in visual cortex: Part of the neural correlate of visual awareness? International Journal of Psychophysiology, 32, 35-45.

Ward, L. M. (2003). Synchronous neural oscillations and cognitive processes. TRENDS in Cognitive Sciences, 7(12), 553-559.

Weiss, S., & Rappelsberger, P. (2000). Long-range EEG synchronization during word

encoding correlates with successful memory performance. Cognitive Brain Research, 9(3), 299-312.

理想氣體模型成就測驗

(D)氣體的平均動能只受氣體溫度的影響,故當溫度保持不變時分子的平均運動速率

( )6-2 承上題,你的理由是

( )9-1 右圖中一分子在邊長為 L=1.5 的密閉容器內運動,分子質量

( )14-2 你的理由是

D

( )20-2 你的理由是

加熱管

( )24-1 將一定量氦氣視為理想氣體,在一升活塞容器中做下列操作:

(甲)若壓力保持不變,溫度由 67 ℃升高到 100 ℃ (乙)然後溫度保持在 100℃,將氣體的體積壓縮變小

上述操作過程中,其氣體狀態變化過程,下列何者表示最為適合?

(A) (B) (C) (D)

( )24-2 你的理由是

(A)溫度只會影響氣體分子的平均動能,而氣體體積只會受氣體分子碰撞頻率影 響,亦即壓力變大,氣體體積變小,因此 PV 乘積維持一定值而與溫度無關 (B)定壓下,溫度升高使得分子碰撞頻率增大,造成體積增加,使得 PV 乘積變大;

定溫下,壓縮體積,使分子碰撞頻率變大,壓力變大,使得 PV 乘積變大 (C)定壓下,溫度上升使分子運動速度變快,體積變大,使得 PV 乘積變大;定溫 下,壓縮體積,使分子碰撞頻率變大,壓力變大,使得 PV 乘積維持一定值

定溫下,壓縮體積,使分子碰撞頻率變大,壓力變大,使得 PV 乘積變大 (C)定壓下,溫度上升使分子運動速度變快,體積變大,使得 PV 乘積變大;定溫 下,壓縮體積,使分子碰撞頻率變大,壓力變大,使得 PV 乘積維持一定值

相關文件