• 沒有找到結果。

第五章 結論與建議

5.2 建議

1. 本研究中螯合劑之添加以 EDDS 提升植體重金屬傳輸效果最佳,而植 體地下部位重金屬累積量之提升,則以 DTPA 效果最佳,本研究僅為 單一添加方式,未來應可將不同螯合劑以互相搭配使用,使植物對於

重金屬吸收可大幅提升;或者改變螯合劑之添加溫度;甚至可將螯合 劑包覆於有機膜並混拌於土壤中,當水淋洗時螯合劑可緩慢釋放出,

改變土壤與重金屬鍵結情形,以提升植生復育之效益。

2. 本研究使用溼地常見植物香蒲、蘆葦,及具生質能源之向日葵、油菜,

皆屬於草本植物,未來研究應可找尋木本植物(如:柳樹等),或其他 更具吸收重金屬之植種(如:培地茅、芥菜等)。

3. 本研究螯合劑之添加方式為全量添加,故會造成部分螯合劑之浪費,

因植體根部以外之土壤,植體無法吸收重金屬。所以未來螯合劑之添 加方式可改由每日添加於根部附近之土壤即可。

參考文獻

李芳胤、陳士賢 (2007),土壤分析實驗手冊,新文京開發出版股份有限 公司。

林浩潭、陳素文、沈季蓉、翁愫慎 (2005),重金屬污染土壤以本土植物 復育之探討,植物保護學會會刊,第47 期,第 241-250 頁。

陳尊賢、張如燕 (1990),鎘、鉛、鋅在台灣污染土壤中存在之形式與分 佈,第二屆土壤污染防治研討會。

陳詩文 (2005),三種印度芥菜對銅鋅鎘鉛污染土壤的生長反應及重金屬 累積能力,國立台灣大學農業化學研究所碩士論文。

陳錕榮 (2000),土壤重金屬污染調查與整治技術評估之研究,國立雲林 科技大學環境與安全工程系碩士論文。

童翔新 (1996),土壤中重金屬污染物分析方法研究,逢甲學報,第 29 期,

第87-96 頁。

張瑞峯 (2005),利用超臨界流體與螯合劑萃取土壤重金屬之研究,朝陽 科技大學環境工程與管理系碩士論文。

葉琮裕 (2002),重金屬污染農地整治,工業污染防治,第 84 期,第 184-191 頁。

葉琮裕 (2002),重金屬污染農地整治技術,環保訓練雙月刊,第 61 期。

葉琮裕、莊朝欽、潘京澤 (2006),含重金屬底泥植物復育法研析,第十 八屆中華民國環境工程年會,第三屆土壤與地下水研討會。

賴俊熹、黃文鑑 (2005),溼地植物-香蒲(Typha)對水中重金屬吸附/吸收 能力之研究,第十七屆中華民國環境工程年會,第三十屆廢水處理

技術研討會。

賴盈瑋 (2004),草地生態系統復育過程之生物資源研究,國立雲林科技 大學環境與安全衛生工程系碩士論文。

賴鴻裕 (2004),EDTA 對促進受重金屬鎘鋅及鉛污染土壤植生復育之研 究,國立台灣大學農業化學研究所博士論文。

謝桑煙 (2002),景觀綠肥用向日葵栽培,台南區農業改良場技術專刊。

行 政 院 環 境 保 護 署 95 年 環 境 河 川 水 質 監 測 年 報 http://wqshow.epa.gov.tw/waterqaqc/img/Download2.bmp

行 政 院 環 境 保 護 署 97 年 台 灣 地 區 受 重 金 屬 污 染 控 制 場 址 分 布 http://sgw.epa.gov.tw/public/0401.asp

Barazani, O., Sathiyamoorthy, P., Manandhar, U., Vulkan, R., and Golan-Goldhirsh, A. (2004) Heavy metal accumulation by Nicotiana glauca Graham in a solid waste disposal site. Chemosphere, 54, 867-872.

Bose, S., Vedamati, J., Rai, V., and Ramanathan, A.L. (2008) Metal uptake and transport by Tyaha angustata L. grown on metal contaminated waste amended soil: An implication of phytoremediation. Geoderma, 145, 136-142.

Bostjan, K., and Domen, L. (2004) Chelator induced phytoextraction and in situ soil washing of Cu. Environmental Pollution, 132, 333-339.

Cannon, F. S., and Yeh, T.Y. (2001) Copper removal to ppb residuals via iron coagulants and biosolids storage conditioning, Journal of Environmental

Engineering, 127, 8, 712-723.

Chen, H., and Cutright, T. (2001) EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere, 45, 21-28.

Chen, Y.X., Lin, Q., Luo, Y.M., He, Y.F., Zhen, S.J., Yu, Y.L., Tian, G.M., and Wong, M.H. (2004) The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere, 50, 807-811.

Cheng, S., Grosse, W., Karrenbrock, F., and Thoennessen, M. (2002) Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecological Engineering, 18, 317-325.

Conesa, H.M., and Faz, A. (2007) Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain).

Chemosphere, 66, 38-44.

Deng, H., Ye, Z.H., and Wong, M.H. (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132, 29-40.

Deng, H., Ye, Z.H., and Wong, M.H. (2006) Lead and zinc accumulation and tolerance in populations of six wetland plants. Environmental Pollution, 141, 69-80.

Evangelou, M.W.H., Bauer, U., Ebel, M., and Schaeffer, A. (2007) The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum. Chemosphere, 68, 345-353.

Fayiga, A.O., Ma, L.Q., Cao, X., and Rathinasabapathi, B. (2004) Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L.. Environmental Pollution, 132, 289-296.

Fellet, G., Marchiol, L., Perosab, D., and Zerbia, G. (2007) The application of phytoremediation technology in a soil contaminated by pyrite cinders.

Ecological Engineering, 31, 207-214.

Garbisu, C., and Alkorta, I. (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment.

Bioresource technology, 77, 229-236.

Gupta, A.K., and Sinha, S. (2007) Phytoextraction capacity of the plants growing on tannery sludge dumping sites. Bioresource Technology, 98, 1788-1794.

Hsiao, K.H., Kao, P.H., and Hseu, Z.Y. (2007) Effects of chelators on chromium and nickel uptake by Brassica juncea on serpentine-mine tailings for phytoextraction. Journal of Hazardous Materials, 148, 366-376.

Jang, A., Seo, Y., and Bishop, P.L. (2005) The removal of heavy metals in unban runoff by sorption on much. Environmental Pollution, 133, 117-127.

Kadlec, R.H., and Knight, R. L. (1996) Treatment Wetlands, CRC Press, Boca Raton, FL, USA.

Kim, I.S., Kang, K.H., Perry, J-G., and Lee, E.J. (2003) Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction.

Environmental Pollution, 126, 235-243.

Komarek, M., and Tlustos, P. (2007) The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere, 67, 640-651.

Lesage, E., Mundia, C., Rousseau, D.P.L., Van de Moortel, A.M.K., Du Laing, G., Meers, E., Tack, F.M.G., De Pauw, N., and Verloo, M.G.

(2007) Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L.. Ecological Engineering, 30, 320-325

Lim, J.M., Salido, A.L., and Butcher, D.J. (2004) Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics.

Microchemical Journal, 76, 3-9.

Luo, C., Shen, Z., and Li, X. (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 59, 1-11.

Luo, C., Shen, Z., and Li, X. (2006) Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere, 63, 1773-1784.

MacFarlane, G.R., Koller, C.E., and Blomberg, S.P. (2007) Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies. Chemosphere, 69, 1454-1464.

Madrid, F., Liphadzi, M.S., and Kirkham, M.B. (2003) Heavy metal displacement in chelate-irrigated soil during phytoremediation. Journal of Hydrology, 272, 107-119.

Manios, T., Stentiford, E.I., and Millner, P. (2003) Removal of heavy metals from a metaliferous water solution by Typha latifolia plants and sewage sludge compost. Chemosphere, 53, 487-494.

Marchiol, L., Assolari, S., Sacco, P., and Zerbi, G. (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environmental Pollution, 132, 21-27.

Mays, P.A., and Edwards, G.S. (2001) Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecological Engineering, 16, 487-500.

Meers, E., Ruttens, A., Hopgood, M.J., Samson, D., and Tack, F.M.G. (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere, 58, 1011-1022.

Meers, E., Vandecasteele, B., and Ruttens, A. (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environmental and Experimental Botany, 60, 57-68.

Meers, E., Tack, L.M.G., and Verloo, M.G. (2008) Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils:

Implications for its use soil remediation. Chemosphere, 70, 358-363.

Mungur, A.S., Shutes, R.B.E., Revitt, D.M., and House, M.A. (1997) An assessment of metal removal by a laboratory scale wetland. Water Science and Technology, 35, 5, 125-133.

Nascimento, C.W.A., Amarasiriwardena, D., and Xing, B. (2006) Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil.

Environmental Pollution, 140, 114-123.

Obrador, A., Rico, M.I., Mingot, J.I., and Alvarez, J.M. (1997) Metal mobility and potential bioavailability in organic matter-rich soil-sludge mixtures:

effects of soil type and contact time, The Science of the Total Environment, 206, 117-126.

Pastor, J., and Aparicio, A.M. (2007) Effects of two chelating agents (EDTA and DTPA) on the autochthonous vegetation of a soil polluted with Cu, Zn and Cd. Science of the Total Environment, 378, 114-118.

Peltier, E.F., Webb, S.M., and Gaillard, J.F. (2003) Zinc and lead sequestration in an impacted wetland system. Advances in Environmental Research, 8, 103-112.

Peng, J.F., Song, Y.H., Yuan, P., Cui, X.Y., and Qiu, G.L., (2009) The remediation of heavy metals contaminated sediment, Journal of Hazardous Materials, 161, 633-640.

Peralta-Videa, J.R., Rosa, G., and Gonzalez, J.H. (2004) Gardea-Torresdey, J.L., Effects of the growth stage on the heavy metal tolerance of alfalfa

plants. Advances in Environmental Research, 8, 679-685.

Peter, R.W. (1999) Chelant extraction of heavy metals from contaminated soils. Journal of Hazardous Materials, 66, 151-210.

Polettini, A., Pomi, R., and Rolle, E. (2007) The effect of operating variables on chelant-assisted remediation of contaminated dredged sediment.

Chemosphere, 66, 866-877.

Santos, F.S., and Garbisu, C. (2006) Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere, 65, 43-50.

Sillanpaa, M., and Oikari, A. (1996) Assessing the impact of complexation by EDTA and DTPA on heavy metal toxicity using microtox bioassay.

Chemosphere, 32, 8, 1485-1497

Sorvari, J., and Sillanpaa, A. (1996) Influence of metal complex formation on heavy metal and free EDTA and DTPA acute toxicity determined by DAPHNLA MAGNA. Chemosphere, 33, 6, 1119-1127

Southichak, B., Nakano, K., Nomura, M., Chiba, N., and Nishimura, O. (2006) Phragmites australis: A novel biosorbent for the removal of heavy metals from aqueous solution. Water Research, 40, 2295-2302.

Sudova, R., Pavlı´kova, D., Macek, T., and Vosa´tka, M. (2007) The effect of EDDS chelate and inoculation with the arbuscular mycorrhizal fungus Glomus intraradices on the efficacy of lead phytoextraction by two tobacco clones. Applied Soil Ecology, 35, 163-173.

Tessier, A., Campbell, P.G.C., and Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metals, Analytical Chemistry, 51, 844-851.

Tejowulan, R.S., and Hendershot, W.H. (1998) Removal of trace metals from contaminated soils using EDTA incorporating resin trapping techniques, Environmental Pollution, 103, 135-142.

Turguta, C., Katie Pepeb, M., and Cutright, T.J. (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environmental Pollution, 131, 147-154.

Vandevivere, P.C., Saveyn, H., Verstraete, W., Feijtel, T.C.J., and Schowanek, D.R. (2001) Biodegradation of metal-[S,S]-EDDS complexes. Environmental Science Technology, 35, 1765-1770.

Villaescusa, I., Fiol, N., Martinez, M., Miralles, N., Poch, J., and Serarols J.

(2004) Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Research, 38, 990-1002.

Vymazal, J., Svehla, J., Kröpfelová, L., and Chrastný, V. (2007) Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Science of the Total Environment, 308, 154-162.

Yan, B., Lan, C.Y., Yang, C.S., Liao, W.B., Chang, H., and Shu, W.S. (2006) Long-term efficiency and stability of wetlands for treating wastewater of lead/zinc mine and the concurrent ecosystem development.

Environmental Pollution, 143, 499-512.

附錄

口試委員意見回覆

口試委員:中山大學環境工程研究所 高志明 教授

1. 結論中所謂以植物收割達到去除重金屬之目的,是否應該為植物拔 除,因植物根部重金屬累積量較多?

回覆:需將植體拔除並進行表面土刨除,其內容已修正於論文P.144。

2. 模槽實驗植體是否有達到有害廢棄物認定標準(TCLP)?

回覆:分析結果模槽植體皆未達 TCLP 之標準,其內容已修正於論文 P.58。

3. 盆栽實驗每日每公斤植體可去除多少重金屬?

回覆:以向日葵為例,於高有機質盆栽控制組銅鋅累積量約為 5.4 及 27.8 mg/kg·day,其內容已修正於論文 P.124。

4. 螯合劑穩定常數之介紹?

回覆:穩定常數數値越高抓取重金屬能力則越強,其內容已修正於論 文P.23。

5. 吸附重金屬之植體是否可以進行脫附?

回覆:吸附後之植體始可進行脫附,國外學者 Southichak et al. (2006) 研究將吸附後之植體以 50mL 濃度為 0.1M 之 HCl 進行脫附,

並以 120rpm 震盪 1 小時使吸附重金屬之植體與洗滌液充分混 合。這可將 90 %以上之重金屬脫附。

6. 植物生長情形及其毒害性?

回覆:易生物分解之螯合劑對植物生長效果最小,其內容已修正於論 文P.120。

7. 螯合劑之添加對於土壤 pH 影響?

回覆:螯合劑每一公斤土壤只添加5 mmol,土壤 pH 原本為 6.58±0.44,

添加螯合劑 DTPA 之 pH 為 6.24±0.21,添加 EDTA 之 pH 則為 6.36±0.08,添加 EDDS 之 pH 則為 6.68±0.17,添加檸檬酸 pH 則為6.10±0.11,添加 5 mmol 之螯合劑對於土壤 pH 之影響甚微。

口試委員:高雄海洋科技大學海洋環境工程系 董正釱 教授

1. 以重金屬銅鋅進行實驗之原因?

回覆:畜牧業於飼料中通常添加銅、鋅,而不當排放畜牧廢水即導致 水體重金屬污染,其內容已修正於論文P.1。

2. 連續分段萃取的方法比較?

回覆:本實驗所使用之序列萃取方式是細分弱鍵結型態比較符合實驗 需求,其內容已於論文中論述於P.38。

3. 實際運用之可行性?

回覆:以植生復育整治受污染之土壤是具可行性,其內容已於論文中 論述於P.146。

4. 中文文獻統一化?

回覆:已修正於論文中。

口試委員:高雄大學土木與環境工程系 袁菁 教授

1. 參考文獻之英文期刊是否要縮寫請一致?

回覆:已修正於論文中。

2. 英文文獻寫法再次確認,並細查是否有孤兒文獻出現?

回覆:已修正於論文中。

3. 在目錄第二章第四點螯合劑 DTPA、EDTA 及 EDDS 之中文名稱為何?

回覆:已修正於論文中。

4. 研究目的以條列式表達應該會比較清楚?

回覆:已修正於論文 P.2。

5. 向日葵是生質能源,它根部可去除重金屬污染,那是否有做葵花子裡 面之重金屬含量嗎?

回覆:向日葵在盆栽試驗中,實驗天數約為 12 天,且向日葵種植以幼 株為主,故生長 12 天之向日葵並未開花,則無法分析葵花子重 金屬含量。

6. 在第三章實驗架構圖,是否可將架構圖改寫,使其更有層次感?

回覆:已修正於論文中。

7. 在第三章 Freundlich 等溫吸附方程式中 1/n > 1 是有利於吸附還是不利 於吸附,其內容有誤請改正?

回覆:吸附參數 1/n > 1 是利於吸附,其內容已修正於論文 P.48。

8. 第三章資料分析中使用統計分析,是否可加以描述 ANOVA 單因子變 異數分析為何?

回覆:ANOVA 為變異數分析,主要係比較三組或三組以上群組之母 體平均數是否有差異。變異數代表觀測資料與平均數之間的離 散程度,當變異數越小代表資料分布越集中,變異數愈大代表

回覆:ANOVA 為變異數分析,主要係比較三組或三組以上群組之母 體平均數是否有差異。變異數代表觀測資料與平均數之間的離 散程度,當變異數越小代表資料分布越集中,變異數愈大代表