• 沒有找到結果。

微粒產生及暴露系統已達成初步目標,未來需要改進的地方如下:

(1) 產生微粒的同時,以相同廠牌的微粒粒徑濃度分佈自動監測儀進行微 粒粒徑及濃度的監測;

(2) 在產生器與暴露腔之間接上一個混合腔(mixing chamber),穩定的產 生氧化鋅微粒後,再通入暴露腔中;

(3) 控制暴露腔中的溫、濕度,以免影響老鼠的生理狀況;

(4) 調整操作條件之參數,以獲取實驗需求所要的數目濃度;

(5) 在實驗動物暴露微粒的同時,監測重量濃度以及表面積濃度。

表1 各種操作條件及量測項目

Exposure Ι Exposure II Exposure III Control 操作條件

註1:Exposure Ι組為暴露30nm 5 hrs;Exposure II組為暴露30nm 10 hrs;Exposure III 組為暴露250nm 10 hrs;Control組為暴露5 hrs,但只監測從開始暴露算起1.5小時 註2:GRIMM SMPS+CPC及TSI SMPS+CPC未能同時監測溫度,因此Exposure II 組及Control組無溫度量測數據

註3:重量濃度及表面積濃度公式 (SMPS User’s Manual)

(氧化鋅密度為5.8 g/cm3)

表2 實驗動物的基本特性

Control Exposure Ι Exposure II Exposure III

N 6 6 6 6

Age (week) 8 8 8 8

Body weight (g) 303.3 (10.3) 288.3 (9.8) 260.8 (15.0) 238.3 (16.0) Mean (standard deviation)

N:實驗動物數目

表3 肺泡灌洗液指標分析

Control Exposure Ι Exposure II Exposure III

N 6 6 6 6

Total cells ( ×104 cell)

41.5 (11.2)a 38.3 (31.0-58.6)b

79.5 (51.9) 67.3 (30.0-163.6)

147.5 (101.3) 133.0 (21.5-325.5)

182.8 (81.5)* 37.8 (31.0-55.1)

53.0 (23.0) 49.9 (29.4-91.6)

48.4 (26.6) 44.2 (9.2-86.7)

24.1 (5.5)*

24.4 (16.8-31.3) LDH

(IU/L) <100 412.7 ( 91.9)*

441.0 (291-512)

688.3 (372.9)*

658.0 (193-1293)

1490 (407.8)*,‡

1696.5 (851-1834) Total protein

(mg/dl) 0.08 (0.02)a

0.09 (0.05-0.11)b 0.13 (0.14)

0.10 (0-0.4) 0.16 (0.13) 0.13 (0.06-0.42)

0.54 (0.21)*,‡

0.48 (0.3-0.79)

a Mean (standard deviation)

b Median (mix-max)

*表示以 Wilcoxon Rank Sum test 分析,相較於 Control 組,p value<0.05

†表示以Wilcoxon Rank Sum test 分析,相較於 Exposure Ι 組,p value<0.05

‡表示以Wilcoxon Rank Sum test 分析,相較於 Exposure II 組,p value<0.05

表4 系統性發炎反應指標分析

Control Exposure Ι Exposure II Exposure III

N 6 6 6 6 6.46 (5.48-7.62)b

6.25 ( 0.35) 6.35 (5.79-6.69)

6.95 (0.54)† 6.73 (6.52-7.86)

7.53 (0.39)*

7.64 (7.05-7.99) HGB

(g/dl)

12.7 (1.1)a 12.8 (11.5-14.2)b

12.6 ( 0.9) 12.6 (11.4-13.9)

13.9 (1.0)† 13.8 (12.7-15.6)

14.3 (1.0)* 37.0 (35.0-41.8)

45.9 (3.7)*,‡ 1006 (676-1917)

910 (112)* 148.4 (142.4-155.4)b

189.6 (45.5)*

170.0 (151.1-260.7)

197.5 (30.5)*

194.3 (159.6-240.7) -

a Mean (standard deviation)

b Median (mix-max)

*表示以 Wilcoxon Rank Sum test 分析,相較於 Control 組,p value<0.05

†表示以Wilcoxon Rank Sum test 分析,相較於 Exposure Ι 組,p value<0.05

‡表示以Wilcoxon Rank Sum test 分析,相較於 Exposure II 組,p value<0.05

圖1-1 奈米氧化鋅產生系統全貌

圖1-2 奈米氧化鋅產生系統全貌

圖1-3 奈米氧化鋅產生系統全貌

圖2 奈米氧化鋅產生系統流程圖

Air

Aerosol Out (ZnO) particle diameter (nm)

number conc. (#/cm3)

圖4 Exposure II組及Exposure III組粒徑及數目濃度分佈圖 particle diameter (nm)

number conc. (#/cm3)

Exposure II Exposure III

CMD: 24.7 nm GSD: 1.72

CMD: 214.4 nm GSD: 1.79

Average Total Conc. (#/cm3)

圖6 Exposure II組數目濃度時間分佈圖

平均數目濃度約為5.3×105 #/cm3

0.E+00

Average Total Conc. (#/cm3)

圖7 Exposure III組數目濃度時間分佈圖

Average Total Conc. (#/cm3)

0.00E+00

Average Total Conc. (#/cm3)

0.E+00

圖9 Exposure Ι組粒徑時間分佈圖

Average median (nm)

0 10 20 30 40 50 60

0 1 2 3 4 5 6 hr

nm

圖10 Exposure II組粒徑時間分佈圖

Average median (nm)

圖11 Exposure III組粒徑時間分佈圖

Average median (nm)

0

圖12 Control組粒徑時間分佈圖

Average median (nm)

0

圖13 以掃描式電子顯微鏡(SEM)所拍攝之奈米氧化鋅微粒

(上圖:放大220,000倍;中圖:放大45,000倍;下圖:放大5,500倍)

圖14 肺泡灌洗液(Total cells)指標分析

*表示以 Wilcoxon Rank Sum test 分析,相較於 Control 組,p value<0.05

圖15 肺泡灌洗液(Neutrophils)指標分析

*表示以 Wilcoxon Rank Sum test 分析,相較於 Control 組,p value<0.05

†表示以Wilcoxon Rank Sum test 分析,相較於 Exposure Ι 組,p value<0.05

‡表示以Wilcoxon Rank Sum test 分析,相較於 Exposure II 組,p value<0.05

圖16 肺泡灌洗液(LDH)指標分析

*表示以 Wilcoxon Rank Sum test 分析,相較於 Control 組,p value<0.05

‡表示以Wilcoxon Rank Sum test 分析,相較於 Exposure II 組,p value<0.05

圖17 肺泡灌洗液(Total protein)指標分析

*表示以 Wilcoxon Rank Sum test 分析,相較於 Control 組,p value<0.05

‡表示以Wilcoxon Rank Sum test 分析,相較於 Exposure II 組,p value<0.05

圖18 周邊血液血球及分類計數(WBC)的測定

*表示以 Wilcoxon Rank Sum test 分析,相較於 Control 組,p value<0.05

圖19 周邊血液血球及分類計數(PLT)的測定

*表示以 Wilcoxon Rank Sum test 分析,相較於 Control 組,p value<0.05

†表示以Wilcoxon Rank Sum test 分析,相較於 Exposure Ι 組,p value<0.05

圖20 周邊血液血球及分類計數(RBC)的測定

*表示以 Wilcoxon Rank Sum test 分析,相較於 Control 組,p value<0.05

†表示以Wilcoxon Rank Sum test 分析,相較於 Exposure Ι 組,p value<0.05

圖21 周邊血液血球及分類計數(HGB)的測定

*表示以 Wilcoxon Rank Sum test 分析,相較於 Control 組,p value<0.05

†表示以Wilcoxon Rank Sum test 分析,相較於 Exposure Ι 組,p value<0.05

圖22 細胞激素(IL-6)的測定

*表示以 Wilcoxon Rank Sum test 分析,相較於對照組,p value<0.05

參考文獻:

Barceloux DG. Zinc. Clinical Toxicology. 1999;37(2):279-92.

Beckett WS, Chalupa DF, Pauly-Brown A, Speers DM, Stewart JC, Frampton MW., Utell MJ, Huang LS, Cox C, Zareba W, and Oberdorster G. Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study.

Am J Respir Crit Care Med. 2005;171(10):1129-35.

Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI.

Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci. 2004;77:347-57.

Brown DM, Stone V, Findlay P, MacNee W, Donaldson K. Increased inflammation and

intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup Environ Med. 2000;57: 685-91.

Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol.

2001;175:191-9.

Borm PJ, Schins RP, Albrecht C. Inhaled particles and lung cancer, part B: paradigms and risk assessment. International Journal of Cancer. 2004;110:3-14.

de Haar C, Hassing I, Bol M, Bleumink R, Pieters R. Ultrafine carbon black particles cause early airway inflammation and have adjuvant activity in a mouse allergic airway disease model. Toxicol Sci 2005;87:409-18.

Dick CA, Brown DM, Donaldson K, Stone V. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhalation Toxicology. 2003;15:39-52.

Driscoll KE. Role of inflammation in the development of rat lung tumors in response to chronic particle exposure. Inhal Toxicol. 1996;8S:139-53.

Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H, Schlesinger RB. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity:Uses and limitations. Toxicol Sci. 2000;55:24-35.

Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, Tran L, Stone V.

The pulmonary toxicology of ultrafine particles. J Aerosol Med. 2002;15:213-20.

Fine JM, Gordon T, Chen LC, Kinney P, Falcone G, Beckett WS. Metal fume fever:

characterization of clinical and plasma IL-6 responses in controlled human exposures to zinc oxide fume at and below the threshold limit value. J Occup Environ Med. 1997;39:722–6.

Fine JM, Gordon T, Chen LC, Kinney P, Falcone G, Sparer J, Beckett WS.

Characterization of clinical tolerance to inhaled zinc oxide in naive subjects and sheet metal workers. J Occup Environ Med. 2000;42:1085-91.

Gao PX, Mai W, Wang ZL. Superelasticity and nanofracture mechanics of ZnO nanohelices. Nano Letters. 2006;6(11):2536-43.

Gordon T, Chen LC, Fine JM, Schlesinger RB, Su WY, Kimmel TA, Amdur MO.

Pulmonary effects of inhaled inhaled zinc oxide in human subjects, guinea pigs, rats, and rabbits. Am Ind Hyg Assoc J. 1992;53(8):503-9.

Grassian VH, O'shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS.

Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect. 2007;115(3):397-402.

Hurt RH, Monthioux M, Kane A. Toxicology of carbon nanomaterials: Status, trends, and perspectives on the special issue. Carbon. 2006;44:1028-33.

Kreyling WG, Semmler M, Moller W. Dosimetry and toxicology of ultrafine particles. J Aerosol Med. 2004;17:140-52.

Kuschner WG, D’Alessandro A, Wong H, Blanc PD. Early pulmonary cytokine responses to zinc oxide fume inhalation. Environ Res. 1997;75:7–11.

Kuschner WG., Wong H, D'Alessandro A, Quinlan P, Blanc PD. Human pulmonary responses to experimental inhalation of high concentration fine and ultrafine magnesium oxide particles. Environ Health Perspect. 1997;105(11):1234-7.

Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci.

2004;77:126-34.

Lei YC, Chen MC, Chan CC, Wang PY, Lee CT, Cheng TJ. Effects of concentrated ambient particles on airway responsiveness and pulmonary inflammation in pulmonary hypertensive rats. Inhal Toxicol. 2004;16(11-12):785-92.

Li JG, Li WX, Xu JY, Cai XQ, Liu RL, Li YJ, Zhao QF, Li QN. Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol. 2007;22(4):415-21.

Malandrino G, Blandino M, Perdicaro LMS, Fragalà IL, Rossi P, Dapporto P. A novel diamine adduct of zinc bis(2-thenoyl-trifluoroacetonate) as a promising precursor for MOCVD of zinc oxide films. Inorg. Chem. 2005;44(26):9684-9.

Maynard AD. Nanotechnology: the next big thing, or much ado about nothing?. Ann.

Occup. Hyg. 2007;51(1):1-12.

Muller J, Huaux F, Lison D. Respiratory toxicity of carbon nanotubes: How worried should we be?. Carbon. 2006;44:1048-56.

Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006;311: 622-7.

Nemmar A, Hamoir J, Nemery B, Gustin P. Evaluation of particle translocation across the alveolo-capillary barrier in isolated perfused rabbit lung model. Toxicology.

2005;208:105-13.

Nemmar A, Hoet PH, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF.

Vanbilloen H. Mortelmans L. Nemery B. Passage of inhaled particles into the blood circulation in humans. Circulation. 2002;105:411-4.

Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect.

2005;113:823-39.

Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C.

Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol.

2004;16:437-45.

Oberdorster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health. 2001;74:1-8.

Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J. Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med.

1997;155:1376-83.

Rehn B, Seiler F , Rehn S , Bruch J, Maier M. Investigations on the inflammatory and genotoxic lung effects of two types of titanium dioxide: untreated and surface treated. Toxicol Appl Pharmacol. 2003;189:84-95.

Roitt, Brosyoff, Male. Immunology. Wolters Kluwer Company. 1996.

Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL.

Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci. 2006;92(1):174-85.

Seaton A, Donaldson K. Nanoscience, nanotoxicology, and the need to think small.

Lancet 2005;365:923-4.

Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. 2005;289:L698-708.

Strohl KP, Thomas AJ, St Jean P, Schlenker EH, Koletsky RJ, Schork NJ. Ventilation and metabolism among rat strains. J Appl Physiol. 1997;82(1):317-23.

Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle

size and surface area. Toxicol Sci. 2006;91:227-36.

Warheit DB, Brock WJ, Lee KP, Webb TR, Reed KL.Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity. Toxicol Sci. 2005;88:514-24.

Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR.

Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004;77:117-25.

Wichmann HE, Spix C, Tuch T, Wolke G, Peters A, Heinrich J, Kreyling WG, Heyder J.

Daily mortality and fine and ultrafine particles in Erfurt, Germany. Part I: role of particle number and particle mass. Res Rep Health Eff Inst. 2000;98:5-86.

Wittmaack K. In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what?. Environ Health Perspect. 2007;115(2):187-94.

鄭尊仁、林宜平、雷侑蓁:奈米科技的健康風險評估,台灣衛誌,2006; 25(3):169-76。

馬遠榮:奈米科技,商周出版,2002。

簡弘民、陳姿名、徐玉杜:奈米微粒產生、監測及控制技術,工業技術研究院/環 境與安全衛生技術發展中心,2004。

研究成果自評

本研究已初步完成微粒產生及暴露系統,這個技術平台可用於後續奈米 整合計畫,及提供國內相關領域學者研究之用。我們也完成不同粒徑之氧化 鋅微粒毒性研究,發現奈米氧化鋅微粒毒性效應值得進一步關注,綜合研究 成果,已達成預定目標。

出席國際學術會議心得報告

計畫編號 NSC 95-2621-Z-002-011

計畫名稱 總計畫:奈米微粒健康風險評估與管理研究:以奈米氧化鋅為例(I)

出國人員姓名

服務機關及職稱 鄭尊仁,台大職衛所教授

會議時間地點 巴黎, 2006 年 9 月

會議名稱 國際流行病學年會

發表論文題目 CYP2E1 and XRCC1 Genetic Polymorphisms and the Risk of Liver Fibrosis in Workers Exposed to Vinyl Chloride Monomer

一、參加會議經過

本次 ISEE 研討會於九月二日到六日在法國巴黎舉行,ISEE (International Society of Environmental Epidemiology)與 ISEA (International Society of Exposure Assessment)共同舉行年 會,共有超過 60 國家,超過一千人與會,台灣也有許多學校組團參加。本次會議之各場討論

包括歐盟(APHE)及美國加拿大(APHNA), 及結合歐洲與北美的 APHENA(Air Pollution and Health: A combined European and North American Approach)等,會議中也有亞洲的 PAPA (Public Health and Air Pollution in Asia)及南美洲的多城市的整合計畫。PAPA 包括中國,曼谷及印度 等國的城市。這些整合計畫多先作單一城市健康效應研究,再作多城市的比較。研究結果顯

PAARC,加州 LA 及 AHSMOG 研究,霍普金司大學的美國 MEDICARE 研究,哈佛的 NURSES HEALTH STUDY,荷蘭的 NLCS-AIR STUDY,美國 MULTI ETHNIC STUDY OF

ATHEROSCLEROSIS 相關研究,探討的相關的疾病包括死亡,呼吸道及心血管疾病以及動脈

都是尚待回答的議題。J SCHWARTZ 作了一個很好的結論,他認為交通污染源會產生健康效 應,但是到底是什麼因素?他也不確定,但是他同意有必要對交通污染源進行瞭解及對成分

相關文件