• 沒有找到結果。

第六章 結論與未來展望

6.2 未來展望

量子點除了運用在太陽能電池之外,還可以用在環境照明、醫學影像、

生物標記、螢幕顯示、量子電腦方面。在本文中利用量子點來增進三五族太 陽能電池的光電功率轉換效率,有別於以往需要對結構做改良,如摻雜別的 元素、長晶程序修改等等;只需要先模擬計算出哪個尺寸的量子點提升的效 率最高,而且成本不高,是非常有可看性的方法。

31

參考文獻

[1] Exergy (available energy) Flow Charts 2.7 YJ solar energy each year for two billion years vs. 1.4 YJ non-renewable resources available once.

[2] Y. -C. Yao, M. -T. Tsai, H. -C. Hsu, L. -W. She, C. -M. Cheng, Y. -C. Chen, C. -J. Wu, and Y. -J. Lee, “Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications,” Opt. Express 20(4), 3479-3489 (2012).

[3] Y. -J. Lee, M. -H. Lee, C. -M. Cheng, and C. -H. Yang, “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on patterned sapphire substrates,” Appl.

Phys. Lett. 98(26), 263504 (2011).

[4] X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, and E. F. Schubert,

“Enhanced omnidirectional photovoltaic performance of solar cells by multiple-discrete-layer tailored- and low- refractive-index anti-reflection coatings,” Adv. Funct. Mater.

23(5), 583-590 (2013).

[5] J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. -C. Lai, and L. -C. Peng,

“Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,”

IEEE Electron Device Lett. 30(3), 225–227 (2009).

[6] M. C. Wei, S. J. Chang, C. Y. Tsia, C. H. Liu, and S. C. Chen, “ SiNx deposited by in-line PECVD for multi-crystalline silicon solar cells,” SOL ENERG MAT SOL C., 80(2), 215-219 (2006).

[7] A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “ InGaN Solar Cells: Present State of the Art and Important Challenges,” Photovoltaics, IEEE Journal of 2(3), 276-293 (2012).

[8] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A.

Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).

[9] S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D.

Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid–grown silicon wire-array photocathodes,” Science 327(5962), 185-187 (2010).

[10] J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P.

Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M.

T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057-1060 (2013).

[11] F. Hetsch, X. Xu, H. Wang, S. V. Kershaw, and A. L. Rohach, “Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: material, charge transfer, and separation aspects of some device toplogies,” J. Phys. Chem. Lett. 2, 1879–1887 (2011).

32

[12] M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A.

Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett. 102(3), 033901 (2013).

[13] “Sharp Develops Concentrator Solar Cell with World's Highest Conversion Efficiency of 44.4%,” http://sharp-world.com/corporate/news/130614.html (2013)

[14] J. Geisz, D. Friedman, J. Ward, A. Duda, W. Olavarria, T. Moriarty, J. Kiehl, M. Romero, A. Norman, K. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).

[15] Katsuaki Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies 2(3), 504–530 (2009).

[16] L. A. Kosyachenko, Solar Cells-Silicon Wafer-Based Technologies (InTech, Rijeka, Croatia, 2011), p. 335-337.

[17] W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).

[18] M. W. Wanlass, S. P. Ahrenkiel, R. K. Ahrenkiel, D. S. Albin, J. J. Carapella, A. Duda, J.

F. Geisz, S. Kurtz, T. Moriarty, R. J. Wehrer, and B. Wernsman, “Lattice-mismatched approaches for high-performance, III-V photovoltaic energy converters,” in Proceedings of the 31th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 2005), pp. 530–535.

[19] R. R. King, M. Haddad, T. Isshiki, P. Colter, J. Ermer, H. Yoon, D. E. Joslin, and N. H.

Karam, “Next-generation, high-efficiency III-V multijunction solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 998–1001.

[20] F. Dimroth, U. Schubert, and A. W. Bett, “25.5% efficient Ga0.35In0.65P/Ga0.83In0.17 as tandem solar cells grown on GaAs substrates,” IEEE Electron Dev. 21(5), 209–211 (2000).

[21] A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1-2), 115–120 (2002).

[22] R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett. 92(18), 186601 (2004).

[23] A. Franceschetti, J. M. An, and A. Zunger, “Impact ionization can explain carrier multiplication in PbSe quantum dots,” Nano Lett. 6(10), 2191–2195 (2006).

[24] http://en.wikipedia.org/wiki/Impact_ionization

[25] M. Wolf, R. Brendel, J. H. Werner, and H. J. Queisser, “Solar cell efficiency and carrier multiplication in Si1-xGex alloys,” J. Appl. Phys. 83(8), 4213–4221(1998).

[26] C. -Y. Huang, D. -Y. Wang, C. -H. Wang, Y. -T. Chen, Y. -T. Wang, Y. -T. Jiang, Y. -J. Yang, C. -C. Chen, and Y. -F. Chen, “Efficient light harvesting by photon downconversion and

33

light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” ACS Nano 4(10), 5849–5854 (2010).

[27] Hertz, Heinrich. Ueber den Einfluss des ultravioletten Lichtes auf die electrische Entladung. Annalen der Physik. 1887, 267 (8): S. 983–1000.

Bibcode:1887AnP...267..983H. doi:10.1002/andp.18872670827.(On an effect of ultra-violet light upon the electric discharge)

[28] The Nobel Prize in Physics 1921. Nobel Foundation.

[29] http://www.solarbuildingtech.com/Solar_PV_Tech/solar_photovoltaic_technologies.htm [30] Third Generation Photovoltaics, M.A. Green, ISBN 3-540-26562-7(Print)ISBN

978-3-540-26563-4 (Online).

[31]http://www.daviddarling.info/encyclopedia/S/AE_small_solar_electric_systems_grid-connected.html

[32] Brus, L.E. (2007). "Chemistry and Physics of Semiconductor Nanocrystals". Retrieved 7 July 2009.

[33] Jump up ^ Norris, D.J. (1995). "Measurement and Assignment of the Size-Dependent Optical Spectrum in Cadmium Selenide (CdSe) Quantum Dots, PhD thesis, MIT".

hdl:1721.1/11129.

[34] Jump up ^ Murray, C. B.; Kagan, C. R.; Bawendi, M. G. (2000). "Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies". Annual Review of Materials Research 30 (1): 545–610.

Bibcode:2000AnRMS..30..545M. doi:10.1146/annurev.matsci.30.1.545.

[35] Reed MA, Randall JN, Aggarwal RJ, Matyi RJ, Moore TM, Wetsel AE (1988)."Observation of discrete electronic states in a zero-dimensional semiconductor

nanostructure". PhysRevLett 60 (6): 535–

537. Bibcode:1988PhRvL..60..535R.doi:10.1103/PhysRevLett.60.535. PMID 10038575.

[36] SIGMA-ALDRICH official web: http://www.sigmaaldrich.com/materials-science/nanomaterials/quantum-dots.html#ref

[37] Patrícia Maria Simões Martins, “ANÁLISE DE MERCADO DE EQUIPAMENTOS CIENTÍFICOS NA ÁREA BIOMÉDICA” Mestrado Integrado em Engenharia Biomédica Coimbra, Setembro 2009

[38]http://www.technologyreview.com/news/509801/quantum-dots-get-commercial-debut-in-more-colorful-sony-tvs/

[39] "Nanotechnology Information Center: Properties, Applications, Research, and Safety Guidelines". American Elements.

[40] Kastner, M. A. Physics Today, 1993, 46(1), 24.

[41] Ashoori, R. C. Nature, 1996, 379(6564), 413.

34

[42] Collier, C. P.; Vossmeyer, T.; Heath, J. R. Annual Review of Physical Chemistry, 1998, 49, 371. - See more at:

http://www.sigmaaldrich.com/materials-science/nanomaterials/quantum-dots.html#ref

[43] Reimann, S. M.; Manninen, M. Reviews of Modern Physics, 2002, 74(4), 1283. - See more at: http://www.sigmaaldrich.com/materials-science/nanomaterials/quantum-dots.html#ref

[44] Bawendi, M. C.; Steigerwald, M. L.; Brus, L. E. Annual Review of Physical Chemistry, 1990, 41, 477. - See more at:

http://www.sigmaaldrich.com/materials-science/nanomaterials/quantum-dots.html#ref

[45] Y. -J. Lee, C. -J. Lee, and C. -M. Cheng, “Enhancing the conversion efficiency of red emission by spin-coating CdSe quantum dots on the green nanorod light-emitting diode,”

Opt. Express 18(104), A554-A561 (2010).

[46] D. Souri and K. Shomalian, “Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60−x) V2O5–

40TeO2–xSb2O3 glasses,” J. Non-Cryst. Solids 355(31-33), 1597–1601 (2009).

[47] ASTMG173–03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, West Conshohocken, Pennsylvania, 2005).

[48] S.O. Kasap “Optoelectronics and Photonics Principles and Practices” p244.

[49] P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(20), 16986–17000 (2007).

35

附錄 A 比爾定律

比爾-朗伯定律(Beer–Lambert law),又稱比爾定律、朗伯-比爾定律、

布格-朗伯-比爾定律(Bouguer–Lambert–Beer law),是光吸收的基本定律,

適用於所有的電磁輻射和所有的吸光物質,包括氣體、固體、液體、分子、

原子和離子。比爾-朗伯定律是吸光光度法、比色分析法和光電比色法的定 量基礎。

假設一束強度為 的平行單色光(入射光)垂直照射於一塊各向同性的均 勻吸收介質表面,在通過厚度為 的吸收層(光程)後,由於吸收層中質點 對光的吸收,該束入射光的強度降低至 ,稱為透射光強度。物質對光吸收 的能力大小與所有吸光質點截面積的大小成正比。設想該厚度為 的吸收層 可以在垂直於入射光的方向上分成厚度無限小的多個小薄層 ,其截面積 為 ,而且每個薄層內,含有吸光質點的數目為 個,每個吸光質點的截 面積均為 。因此,此薄層內所有吸光質點的總截面積 = 。

36

假設強度為 的入射光照射到該薄層上後,光強度減弱了 。 是在小薄 層中光被吸收程度的量度,它與薄層中吸光質點的總截面積 以及入射光 的強度 成正比,也就是

−dI = =

負號表示光強度因吸收而減弱,k 為比例係數。假設吸光物質的濃度為 , 則上述薄層中的吸光質點數為

dn = 6.02 × 10

代入上式,合併常數項並設 = 6.02 × 10 經整理得

− =

對上式進行定積分,則

− =

−ln =

= 0.434 =

上式中 稱為吸光度(A);而透射光強度與入射光強度之間的比值 稱為透射比,或稱透光度(T),其關係為:

A = = 1

T =

37

38

相關文件