• 沒有找到結果。

本研究在 MIM 元件的電流傳導機制研究,概括出一個粗略的輪廓,然而對 於 Ni/TiO2_60nm/Ni 的元件來說,其三階段的電流傳導現象依然有一些盲點需要 解釋。我們在第一階段小電壓時以 P-F conduction 主導以及大電壓時 field emission 主導的電流機制,以公式進行電流擬和可以符合趨勢,但第二階段的電 流上升區域,尚未找到公式進行電流擬和。未來希望利用變溫以及 pulse IV 的量 測數據,來反推出 Ni/TiO2的蕭基能障大小,以及擬和出完整的電流曲線。

另外在脈衝式電壓電流量測部分,目前量測的最高頻率限制於 500kHz,再 將頻率向上提升便會出現無法解釋的電流現象,估計是由於電路中非理想寄生電 容電感造成的誤差,因此無論是在量測儀器的安排上,或是量測程式的設定上,

都還有一定進步的空間。

58

參考文獻

[1] R. Waser, "Resistive non-volatile memory devices," Microelectronic Engineering, vol. 86, pp. 1925-1928, 2009.

[2] J. Shin, I. Kim, K. P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, and S.

Park, "TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application," Journal of Applied Physics, vol. 109, pp.

033712-033712-4, 2011.

[3] J. J. Huang, T. H. Hou, C. W. Hsu, Y. M. Tseng, W. H. Chang, W. Y. Jang, and C. H. Lin, "Flexible one diode–one resistor crossbar resistive-switching memory,"

Japanese Journal of Applied Physics, vol. 51, p. 04DD09, 2012.

[4] J. J. Huang, Y. M. Tseng, C. W. Hsu, and T. H. Hou, "Bipolar nonlinear Ni/TiO2/Ni selector for 1S1R crossbar array applications," IEEE Electron Device Letters, vol. 32, p. 1427, 2011.

[5] J. J. Huang, C. W. Kuo, W. C. Chang, and T. H. Hou, "Transition of stable rectification to resistive-switching in Ti/TiO/Pt oxide diode," Applied Physics Letters, vol. 96, p. 262901, 2010.

[6] M. G. Kim, S. M. Kim, E. J. Choi, S. E. Moon, J. Park, H. C. Kim, B. H. Park, M. J. Lee, S. Seo, and D. H. Seo, "Study of transport and dielectric of resistive memory states in NiO thin film," Japanese Journal of Applied Physics, vol. 44, 2005.

[7] H. Lee, P. Chen, T. Wu, Y. Chen, C. Wang, P. Tzeng, C. Lin, F. Chen, C. Lien, and M. J. Tsai, "Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.

[8] W. Chien, Y. Chen, E. Lai, Y. Yao, P. Lin, S. Horng, J. Gong, T. Chou, H. Lin, and M. Chang, "Unipolar switching behaviors of RTO WOx RRAM," Electron Device

59 Letters, IEEE, vol. 31, pp. 126-128, 2010.

[9] C. Lee, B. Kang, A. Benayad, M. Lee, S. E. Ahn, K. Kim, G. Stefanovich, Y.

Park, and I. Yoo, "Effects of metal electrodes on the resistive memory switching property of NiO thin films," Applied Physics Letters, vol. 93, pp. 042115-042115-3, 2008.

[10] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, and S. Han, "Atomic structure of conducting nanofilaments in TiO2 resistive switching memory," Nature Nanotechnology, vol. 5, pp. 148-153, 2010.

[11] R. Waser and M. Aono, "Nanoionics-based resistive switching memories,"

Nature materials, vol. 6, pp. 833-840, 2007.

[12] L. Goux, J. Lisoni, M. Jurczak, D. Wouters, L. Courtade, and C. Muller,

“Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers,” Journal of Applied Physics, vol. 107,pp.

024512-024512-7, 2010.

[13] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, "Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application," Nano Lett, vol. 9, pp. 1636-1643, 2009.

[14] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, "Complementary resistive switches for passive nanocrossbar memories," Nature materials, vol. 9, pp. 403-406, 2010.

[15] S. Yu, J. Liang, Y. Wu, and H. S. P. Wong, "Read/write schemes analysis for novel complementary resistive switches in passive crossbar memory arrays,"

Nanotechnology, vol. 21, p. 465202, 2010.

[16] J. J. Huang, Y. M. Tseng, W. C. Luo, C. W. Hsu, and T. H. Hou, "One selector-one resistor (1S1R) crossbar array for high-density flexible memory

60

applications," in Electron Devices Meeting (IEDM), 2011 IEEE International, 2011, pp. 31.7. 1-31.7. 4.

[17] 曾奕銘, "利用選擇器串接電阻式記憶體在可撓式基板上製作高密度交錯式 記憶體陣列, "2011.

[18] N. Zhong, H. Shima, and H. Akinaga, "Rectifying characteristic of Pt/TiO/metal/Pt controlled by electronegativity," Applied Physics Letters, vol. 96, p.

042107, 2010.

[19] A. L. Linsebigler, G. Lu, and J. T. Yates Jr, "Photocatalysis on TiO2 surfaces:

principles, mechanisms, and selected results," Chemical Reviews, vol. 95, pp. 735-758, 1995.

[20] K. M. Glassford and J. R. Chelikowsky, "Structural and electronic properties of titanium dioxide," Physical Review B, vol. 46, p. 1284, 1992.

[21] B. J. Morgan and G. W. Watson, "Intrinsic n-type defect formation in TiO2: a comparison of rutile and anatase from GGA+ U calculations," The Journal of Physical Chemistry C, vol. 114, pp. 2321-2328, 2010.

[22] P. Knauth and H. Tuller, "Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide," Journal of Applied Physics, vol. 85, p. 897, 1999.

[23] A. A. Bonapasta and F. Filippone, "Photocatalytic reduction of oxygen molecules at the (100) TiO2 anatase surface," Surface science, vol. 577, pp. 59-68, 2005.

[24] C. Wu, "The research on the reliability of MOS capacitor of high-k HfO2 ultrathin film deposited on different substrates," 2003.

[25] 鄭新川, "Zn1-xMgxO薄膜之單極電阻轉換效應," 2008.

[26] C. Y. Lee, "Electrical analysis of metal oxide semiconductor device with rare earth oxide thin films," 2009.

[27] S. M. Sze, Physics of semiconductor device, 2nd ed., Wiley, New York, 1981,

61 p380, 403, 852.

[28] McGraw-Hill, McGraw-Hill concise encyclopedia of physics: McGraw-Hill Professional, 2002.

[29] F. Padovani and R. Stratton, “Field and thermionic-field emission in Schottky barriers,” Solid-State Electronics, vol. 9, pp. 695-707, 1966.

[30] J. G. Simmons, "Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems," Physical Review, vol. 155, p. 657, 1967.

[31] Sample Program Learning Kit User’s Guide

[32] S. Trasatti, “Work function, electronegativity, and electrochemical behavior of metals: III. electrolytic hydrogen evolution in acid solutions,” Journal of Electronalytical Chemistry and Interfacial Electrochemistry, vol. 39, pp. 163-184,

1972.

[33] website “Functional combinations in solid states” by h.dr. V.Gavryushin, h.dr.

A.Žukauskas

[34] S. M. Sze, Physics of Semiconductor Devices, 3rd ed. New York: John Wiley &

Sons, 2007, pp.150~pp.152

[35] B. Long, J. Ordosgoitti, R. Jha, and C. Melkonian, "Understanding the charge transport mechanism in VRS and BRS states of transition metal oxide nanoelectronic memristor devices," Electron Devices, IEEE Transactions on, vol. 58, pp. 3912-3919, 2011.

[36] Y. Beggah, D. Mekki, N. Tabet, and R. Tarento, "Calculation of the electron beam induced current at the interface of a Schottky contact in the presence of Shockley–Read–Hall recombination," Solid-State Electronics, vol. 42, pp. 379-383, 1998.

62

簡歷

 基本資料

姓名:陳冠龍 (Guan-Long Chen) 性別:男

生日:民國 77 年 4 月 11 日

住址:台北市松山區民生東路 5 段 222-1 號 6 樓 電話:02-27688565

E-mail:caregutsfair@yahoo.com.tw

 學歷

國立交通大學電子系(95 年 9 月~99 年 6 月)

國立交通大學電子研究所碩士班(99 年 9 月~101 年 11 月)

 論文題目

二氧化鈦雙極非線性選擇器元件電流傳導機制研究

Current Conduction Mechanisms of TiO2-based Bipolar Nonlinear Selection Device

相關文件