• 沒有找到結果。

第五章 結論與未來研究方向

5.2 未來工作

我們已經成功的使用高密度電漿化學氣相沉積系統製作出非晶矽(a-Si)薄 膜太陽能電池,未來將持續開發不同能隙的矽基薄膜吸光材料來形成多接面矽薄 膜太陽能電池。目前有兩大方向:(1)藉由調變[H2]/[SiH4]氣體流量比例,我們已 開發出在低氫流量比的條件下成長非晶矽薄膜,其能隙約1.8eV;若在高氫流量 比的條件下可以成長微晶矽(μc-Si)薄膜,其能隙值約 1.1eV。(2)透過有效的鍺(Ge) 原子摻雜,可以沉積非晶矽鍺(a-SiGe)使其能隙調整至約 1.5eV。

單接面非晶矽太陽能電池無法吸收低能量的光,而單接面微晶矽太陽能電池 會有熱損耗問題,所以這兩種單接面太陽能電池的轉換效率較低,約 10%左右。

若將這兩種不同能隙的材料所製程的太陽能電池做成堆疊結構,將可吸收不同波 段的光源,形成 a-Si/μc-Si 雙接面薄膜太陽能電池。由於太陽光的吸收範圍及 利用率增加,因此效率可提升至 12%。若再加上 a-SiGe 材料而形成 a-Si/a-SiGe/

μc-Si 三接面薄膜太陽能電池,效率更可達到 15%[13]。

參考文獻

“honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells," Applied Physics Letters, vol. 73, p. 1991, 1998.

[6] A. Goetzberger, C. Hebling, and H. Schock, "Photovoltaic materials, history, status and outlook," Materials Science & Engineering R, vol. 40, pp. 1-46, 2003.

[7] M. Green, K. Emery, D. King, S. Igari, and W. Warta, "Solar cell efficiency tables (version 21)," Progress in Photovoltaics:

Research and Applications, vol. 11, pp. 39-45, 2003.

[8] J. Yang, A. Banerjee, and S. Guha, "Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies," Applied Physics Letters, vol. 70, p. 2975, 1997.

[9] K. Kuribayashi, H. Matsumoto, H. Uda, Y. Komatsu, A. Nakano, and S. Ikegami, "Preparation of low resistance contact electrode in

screen printed CdS/CdTe solar cell," Japanese Journal of Applied Physics, vol. 22, pp. 1828-1831, 1983.

[10] D. Carlson and A. Catalano, "Improving the performance and reducing the cost of amorphous silicon solar cells'," Optoelectronics, vol.

4, pp. 185-193, 1989.

[11] H. Tarui, S. Tsuda, and S. Nakano, "Recent progress of amorphous silicon solar cell applications and systems," Renewable Energy, vol.

8, pp. 390-395, 1996.

[12] 余合興, 光電子學, 4 ed.: 中央圖書出版社, 2000.

[13] B. Yan, G. Yue, J. Owens, J. Yang, and S. Guha, "Over 15% efficient hydrogenated amorphous silicon based triple-junction solar cells incorporating nanocrystalline silicon," 2006.

[14] Y. Ichikawa, T. Yoshida, T. Hama, H. Sakai, and K. Harashima,

"Production technology for amorphous silicon-based flexible solar cells," Solar Energy Materials and Solar Cells, vol. 66, pp. 107-115, 2001.

[15] T. Soderstrom, F. Haug, V. Terrazzoni-Daudrix, and C. Ballif,

"Optimization of amorphous silicon thin film solar cells for flexible photovoltaics," Journal of Applied Physics, vol. 103, pp.

114509-114509, 2008.

[16] H. Mase, M. Kondo, and A. Matsuda, "Microcrystalline silicon solar cells fabricated on polymer substrate," Solar Energy Materials and Solar Cells, vol. 74, pp. 547-552, 2002.

[17] T. Takeda, M. Kondo, A. Matsuda, J. Inc, and J. Tsukuba, "Thin film

1580-1583.

[18] Y. Ishikawa and M. Schubert, "Flexible protocrystalline silicon solar cells with amorphous buffer layer," Japanese Journal of Applied Physics, vol. 45, pp. 6812-6822, 2006.

[19] J. Rath, M. Brinza, Y. Liu, A. Borreman, and R. Schropp,

"Fabrication of thin film silicon solar cells on plastic substrate by very high frequency PECVD," Solar Energy Materials and Solar Cells, 2010.

[20] J. Rath, Y. Liu, A. Borreman, E. Hamers, R. Schlatmann, G. Jongerden, and R. Schropp, "Thin film silicon modules on plastic superstrates," Journal of Non-Crystalline Solids, vol. 354, pp.

2381-2385, 2008.

[21] X. Xu, A. Banerjee, and J. Yang, "HIGH EFFICIENCY ULTRA LIGHTWEIGHT a-Si: H/a-SiGe: H/a-SiGe: H TRIPLE JUNCTION SOLAR CELLS ON POLYMER SUBSTRATE USING ROLL-TO-ROLL TECHNOLOGY."

[22] A. Matsuda, "Thin-Film Silicon-- Growth Process and Solar Cell Application," Japanese Journal of Applied Physics, vol. 43, pp.

7909-7920, 2004.

[23] 蔡進譯, "超高效率太陽電池-從愛因斯坦的光電效應談起," 物理雙月刊, vol. 27, pp. 701-719, 2005.

[24] J. Han, M. Tan, J. Zhu, S. Meng, B. Wang, S. Mu, and D. Cao,

"Photovoltaic characteristics of amorphous silicon solar cells using boron doped tetrahedral amorphous carbon films as p-type window materials," Applied Physics Letters, vol. 90, p. 083508, 2007.

[25] H. Fujiwara, T. Kaneko, and M. Kondo, "Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells,"

Applied Physics Letters, vol. 91, p. 133508, 2007.

[26] C. Das, A. Lambertz, J. Huepkes, W. Reetz, and F. Finger, "A constructive combination of antireflection and intermediate-reflector layers for a-Si∕ μc-Si thin film solar cells," Applied Physics Letters, vol. 92, p. 053509, 2008.

[27] H. Fujiwara and M. Kondo, "Impact of epitaxial growth at the heterointerface of a-Si: H∕ c-Si solar cells," Applied Physics Letters, vol. 90, p. 013503, 2007.

[28] S. Myong, S. Kim, and K. Lim, "Improvement of pin-type amorphous silicon solar cell performance by employing double silicon-carbide p-layer structure," Journal of Applied Physics, vol. 95, p. 1525, 2004.

[29] P. Buehlmann, J. Bailat, D. Domine, A. Billet, F. Meillaud, A.

Feltrin, and C. Ballif, "In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells," Applied Physics Letters, vol. 91, p. 143505, 2007.

[30] R. Schropp and M. Zeman, Amorphous and microcrystalline silicon solar cells: modeling, materials, and device technology: Kluwer Academic Publishers, 1998.

[31] S. Guha, J. Yang, P. Nath, and M. Hack, "Enhancement of open circuit voltage in high efficiency amorphous silicon alloy solar cells,"

Applied Physics Letters, vol. 49, p. 218, 1986.

oxide/p+/i junction in amorphous silicon solar cells by tailored hydrogen flux during growth," Thin Solid Films, vol. 394, pp. 48-62, 2001.

[33] J. Rath and R. Schropp, "Incorporation of p-type microcrystalline silicon films in amorphous silicon based solar cells in a superstrate structure," Solar Energy Materials and Solar Cells, vol.

53, pp. 189-203, 1998.

相關文件