• 沒有找到結果。

5. 結論與未來發展

5.2 未來發展

5.2.2 椎間融合器的發展

從生物力學的分析上,已知 TLIF 融合手術是可行的。但目前市面上,

配合 TLIF 手術專用之融合器的設計,仍有改善的空間。例如材料的選擇、

幾何形狀的規劃、填充補骨的空間等等。若能以現有的分析為基礎,進一 步找出較完整的融合器設計條件,針對現有的產品做最佳化或是開發新產 品,相信可以給予醫師和融合器使用者,在臨床上有更好的選擇。

65

參考文獻

[1] Hibbs RH, An operation for progressive spinal deformities, New York Med J, 93:1013-1016, 1911.

[2] 鍾政成,腰椎椎間融合器之設計與生物力學評估,國立陽明大學復健 科技輔具研究所碩士論文,2004 年。

[3] Bagby GW, Arthrodesis by the distraction-compression method using a stainless steel implant, Orthopedics, 11:931-934, 1988.

[4] 陳振昇,腰椎融合手術的生物力學分析,國立陽明大學醫學工程研究 所博士論文,2000 年。

[5] Brantigan JW, McAfee PC, Cunnungham BW, Wang H and Orbegoso CM, Interbody lumbar fusion using a carbon fiber cage implant versus allograft bone, Spine, 19(13):1436-1444, 1994.

[6] Ray CD, Threaded titanium cages for lumbar interbody fusion, Spine, 22(6):667-679, 1997.

[7] Matge G, Cervical cages fusion with 5 different implants: 250 cases, Acta Neurochie, 144(6):539-549, 1997.

[8] Agrillo U, Mastronardi L and Puzzilli F, Anterior Cervical fusion with carbon fiber cage containing coralline hydroxyapatite: preliminary observations in 45 consecutive cases of soft-disc herniation, Journal of Neurosurg, 96(3 suppl)273-276, 2002.

[9] Yuan HA, Kuslich SD, Dowdle JA Jr, Ulstrom CL and Griffith SL, Prospective multicenter clinical trial of the BAK interbody fusion system, Annual Meeting of the North American Spine Society, New York, 1997.

[10] Humphreys SC, Hodges SD, Patwardhan AG, Eck JC, Murphy RB and Covington LA, Comparison of posterior and transforaminal approaches to lumbar interbidy fusion, Spine, 26(5):567-571, 2001.

66

[11] Chen D, Fay LA, Lok J, Yuan P, Edwards WT and Yuan HA, Icreasing neuroforaminal volume by anterior interbody distraction in degenerative lumbar spine, Spine, 20:74-79, 1995.

[12] Lund T, Oxland TR, Jost B, Cripton P, Grassmann S, Etter C and Nolte LP, Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density, The Journal of Bone and Joint Surgery, 80(2):351-359, 1998.

[13] Kanayama M, Cunnungham BW, Haggerty CJ, Abumi K, Kaneda K and McAfee PC, In vitro biomechanical investigation of the stability and stess-shielding effect of lumbar unterbody fusion devices, J Neurosurg, 93:256-259, 2000.

[14] Kettler A, Wilke HJ, Dietl R, Krammer M, Lumenta C and Claes L, Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading,J Neurosurg, 92(1 Suppl):87-92, 2000 Jan.

[15] Kandziora F, Schollmeier G, Scholz M, Schaefer J, Scholz A, Schmidmaier G, Schroder R, Bail H, Duda G, Mittlmeier T and Haas NP, Influence of cage design on interbody fusion in a sheep cervical spine model, J Neurosurg, 96(3 Suppl):321-332, 2002.

[16] Dietl RH, Krammer M, Kettler A, Wilke HJ and Claes L, Pullout test with three lumbar interbody fusion cages, Spine,27(10):1029-1036, 2002.

[17] Wilke HJ, Kettler A, Goetz C and Claes L, Subsidence resulting from simulated postoperative neck movements: an in vitro investigation with a new cervical fusion cage, Spine, 25(21):2767-2770, 2000 Nov.

[18] Zhao J, Hai Y, Ordway NR, Park CK and Yuan HA, Posterior lumbar interbody fusion using posterolateral placement of a single cylindrical threaded cage, Spine, 25(4):425-430, 2000.

[19] Heth JA, Hitchon PW, Goel VK, Rogge TN, Drake JS and Torner JC, A biomechanical comparison between anterior and transverse interbody fusion cages, Spine, 26(12):261-267, 2001.

[20] Wang ST, Goel VK, Kubo S, Choi W, Coppes JK, Liu CL and Chen TH, Comparison od stabilities between obliquely and conventionally inserted Bagby

67

amd Kuslich cages as posterior lumbar interbody fusion in a cadaver model, J Chin Med Assoc, 66(11):676-681, 2003.

[21] Wang ST, Goel VK, Fu CY, Kubo S, Choi W, Liu CL and Chen TH, Posterior instrumentation reduces differences i spine stability as a result of different cage orientations: an in vitro study, Spine, 30(1):62-67, 2004.

[22] Harris BM, Hilibrand AS, Savas PE, Pellegrino A, Vaccaro AR, Siegler S and Albert TH, Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine, Spine, 29(4):65-70, 2004.

[23] Kettler A, Schmoelz W, Kast E, Gottwald M, Claes L and Wilke HJ, In vitro stabilizing effect of a transforaminal compared with two posterior lumbar interbody fusion cages, Spine, 30(22):665-670, 2005.

[24] Ames CP, Acosta FL Jr, Chi J, Iyengar J, Muiru W, Acaroglu E and Puttlitz CM, Biomechanical comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion performed at 1 and 2 levels, Spine, 30(19):562-566, 2005.

[25] Pitzen T, Geisler FH, Matthis D, Muller-Storz H and Steudel WI, Motion of threaded cages in posterior lumbar interbody fusion, Europen Spine Journal, 9:571-576, 2000.

[26] Pitzen T, Geisler FH, Matthis D, Muller-Storz H, Pedersen K and Steudel WI, The influence of cancellous bone desity on load shearing in human lumbar spine: a compression between an intact and surgically altered motion segment, europen Spine Journal, 10:23-29, 2001.

[27] Pitzen T, Matthis D and Steudel WI, The effect of poterior instrumentation following PLIF with BAK cages is most pronounced in weak bone, Acta Neurochir(Wien), 144(2):121-128, 2002.

[28] Kim Y, Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segment, Spine, 26(13):1437-1442, 2001.

[29] Polikeit A, Ferguson SJ, Nolte LP and Orr TE, Factors influencing stresss in the lumbar spine after the insertion of intervertebral cages: finite element analysis, Europen Spine Journal, 12(4):413-420, 2003.

68

[30] Lee KK, Teo EC, Fuss FK, Vanneuville V, Qiu TX, Ng HW, Yang K and Sabitzer RJ, Finite-element Analysis for lumbar interbody fusion under axial loading, IEEE Transaction on Biomedical Engineering, 50(3):393-400, 2004.

[31] Fantigrossi A, Galbusera F, Raimondi MT, Sassi M and Fornari M, Biomechanical analysis of cages for posterior limbar interbody fusion, Medical Engineering & Physis, 2006 Mar.

[32] Marieb EN and Mallatt J, Human Anatomy, The Benjamin/Cummings Publishing Company, Inc., Redwood City, California. 1992.

[33] Augustus A. White III and Manohar M. Panjabi, Clinical Biomechanics of the Spine, 2ed edition, J.B Lippincott Company, United States of America, 1990.

[34] Adam C, Pearcy M and McCombe P, Stress of interbody fusion - finite element modelling of intervertebral omplant and vertebral body, Clinical Biomechanics, 18:265-272, 2003.

[35] Niebur GL, Feldstein MJ, Yuen JC, Chen TJ and Keaveny TM, High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone, Journal of Biomechanics, 33:1575-1583, 2000.

[36] Goel VK, Monroe BT, Gilbertson LG and Brinckmann P, Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads, Spine, 20(6):689-698, 1995.

[37] Shirazi-Adl A, Ahmed AM and Shrivastava SC, Mechanical response of a lumbar motion segment in axial torque alone and combined with compression, Spine, 11(9):914-927, 1986.

[38] Agur AMR and Lee MJ, Grant’s atlas of anatomy, 10th edition, Williams&Wilkins Lippincott, 1999.

[39] Lu YM, Hutton WC and Gharpuray VM, Do bending, twisting, and diurnal fulid change in the disc affect the propensity to prolapse? A viscoelastic finite element model, Spine, 21(22):2570-2579, 1996b.

69

[40] Rohlmann A, Zander T and Bergmann G, Effects of fusion-bone stiffness on the mechanical behavior of the lumbar spine after vertebral body replacement, Clinical Biomechanics, 21:221-227, 2006.

[41] Felon L, Goel VK, Sairyo K, Biyani A and Ebraheim N, Effects of Disc Height Decrease on the Degenerated Segment Biomechanics – A Finite Element Investigation, 52th ORS conference, Chicago, USA, 2006.

[42] Rohlmann A, Zander T and Bergmann G, Effects of total disc replacement with ProDisc on intersegmental rotation of the lumbar spine, Spine, 30(7):738-743, 2005.

[43] Schmidt H, Heuer F, Simon U, Kettler A, Rohlmann A, Claes L and Wilke HH, Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus, Clinical Biomechanics, 21:337-344, 2006.

[44] Yamamoto I, Panjabi MM, Crisco T and Oxland T, Three-dimension movement of the whole lumbar spine and lumbosacral joint, Spine, 14(11):1256-1260, 1989.

[45] Chen CS, Cheng CK, Liu CL and Lo WH, Stress analysis of the disc adjacent fusion in lumbar spine, Med. Eng. Phys, 23:483-491,2001.

[46] Yamamoto I, Panjabi MM, Crisco T, Oxland T, Three-dimension movement of the whole lumbar spine and lumbosacral joint, Spine, 14(11):1256-1260, 1989.

[47] Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ, Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves, J Bone Joint Surg Am, 76(3):413-24, 1994.

[48] Rohlmann A, Neller S, Claes L, Bergmann G and Wilke HJ, Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine, Spine, 26(24):E557-E561, 2001.

[49] Goel VK, Grauer JN, Patel TC, Biyani A, Sairyo K, Vishnubhotla S, Matyas A, Cowgill I, Shaw M, Long R, Dick D, Panjabi MM and Serhan H, Effects of charite´ artificial disc on the implanted andadjacent spinal segments mechanics using a hybridtesting protocol, Spine, 30(24):2577-2564, 2005.

70

[50] Leivseth G, Braaten S, Frobin W and Brinckmann P, Mobility of lumbar segments instrumented with a ProDisc II prosthesis: a two-year follow-up study, Spine, 31(15):1726-33, 2006.

[51] Lindsey C, Deviren V, Xu Z, Yeh RF and Puttlitz CM, The effects of rod contouring on spinal construct fatigue strength, Spine, 31(15):1680-1687, 2006.

71

附錄A:預負荷對本研究模型的影響

本研究在進行分析時,為模擬腰椎在人體內實際的狀況,在脊椎上施 加了模擬人體自重的的預負荷。因為本研究的腰椎模型在幾何上,有和人 體相同的脊椎前凸(lordosis),本研究的預負荷施加方式會影響椎節的可動角 度,尤其是在前後彎曲的方向上。表 A- 1 是 INT 模型中,各個動作配合不 同預負荷在 L3-L4 的角度變化。包括:(1)無預負荷(INT-N);(2)預負荷較靠 近脊椎中央(INT-M,圖 A- 1 黃色箭頭處);(3) 預負荷較靠近後側(INT-P,

圖 A- 1 綠色箭頭處)。結果顯示施加預負荷會造成椎節可動角度的減少,尤 其是在前後彎曲上。在 INT-M 的情形下,前彎動作僅減少約 0.5°,而在後 彎動作上則剩下不到 1°的變化;而 INT-P 的趨勢則相反,在前彎動作上剩 下不到 1°的變化。

為使預負荷施加後,對於椎節角度的影響最小,在 INT-M 到 INT-P 之 間,取四點作為預負荷施加的中心點,進行僅施加預負荷的分析。表 A- 2 是受預負荷後,預定的植入端(L3-L4)及鄰近端(L2-L3、L4-L5)椎節產生的 角度變化。由表中可知,預負荷施加在 INT_P 的位置時,對植入端椎節的 影響最小,對鄰近端椎節的影響則尚可接受;因為植入端椎節是本研究的 重點,因此以此位置為預負荷施加的中心。

72

根據以上分析,模型在植入椎間融合器後,雖然表現出相較於 INT 有 ROM 減少,穩定度增加的情形,但在臨床上小於 1°的動作其實已經滿足融 合所需的穩定度了。在 TLIF-Ad、TLIF-Md、TLIF-Od 的前彎動作比較時,

因為其角度變化都在 1°以內,所以認為前彎動作上的差異,是可以接受的。

表 A- 1 INT 配合不同預負荷位置的角度變化

INT-N (°) INT-M (°) INT-P (°)

Flexion 3.678 3.186 0.785

Extension 3.31 0.943 3.238

Left Lateral Bending 3.816 2.062 2.42 Right Lateral Bending 3.816 2.062 2.42

Left Axial Rotation 2.183 1.928 1.656 Right Axial Rotation 2.183 1.928 1.656

圖 A- 1 INT_M(黃色箭頭)和 INT_P(綠色箭頭)的預負荷施加位置

73

表 A- 2 僅施加預負荷的椎節角度變化

L2-L3 (°) L3-L4 (°) L4-L5 (°) INT_M2 0.622 0.396 4.028 INT_M6 0.071 0.840 1.544 INT_M8 1.547 0.657 0.884 INT_P 1.631 0.336 0.768

74

附錄B:各模型 ROM 整理.

圖 B- 1 未施加預負荷並配合雙側椎足螺釘系統的 ROM

L2-L3 (Without Preload)

0

Flexion Extension Left Lateral Bending

Right Lateral Bending

Left Axial Rotation

L3-L4 (Without Preload)

0

Flexion Extension Left Lateral Bending

Right Lateral Bending

Left Axial Rotation

L4-L5 (Without Preload)

0

Flexion Extension Left Lateral Bending

Right Lateral Bending

Left Axial Rotation

75

圖 B- 2 施加預負荷並配合雙側椎足螺釘系統的 ROM

L4-L5 (With Preload / Double Rods)

0

Flexion Extension Left Lateral TLIF anterior TLIF middle TLIF oblique L2-L3 (With Preload / Double Rods)

0

Flexion Extension Left Lateral TLIF anterior TLIF middle TLIF oblique

L3-L4 (With Preload / Double Rods)

0

Flexion Extension Left Lateral TLIF anterior TLIF middle TLIF oblique

76

圖 B- 3 施加預負荷並配合單側椎足螺釘系統的 ROM

L2-L3 (With Preload / Single Rod)

0

Flexion Extension Left Lateral Bending

Right Lateral Bending

Left Axial Rotation TLIF anterior TLIF middle TLIF oblique

L3-L4 (With Preload / Single Rod)

0

Flexion Extension Left Lateral Bending

Right Lateral Bending

Left Axial Rotation TLIF anterior TLIF middle TLIF oblique

L4-L5 (With Preload / Single Rod)

0

Flexion Extension Left Lateral Bending

Right Lateral Bending

Left Axial Rotation TLIF anterior TLIF middle TLIF oblique

77

Flexion Extension Left Lateral Bending

Right Lateral Bending

Left Axial Rotation

Rught Axial Rotation

78

附錄D:兩節脊椎模型之比較

在得到經驗證後的五節脊椎模型後,因為是第一次使用在植入 TLIF 形 式融合器的分析上,本研究根據 Kettler[23]等人的體外試驗研究,取模型中 的兩個椎節,進行測試和比較。此部分的模型使用 L2 和 L3 兩節脊椎,分 別以傳統 PLIF 方式植入兩顆矩形融合器和以 TLIF 方式植入半月形融合 器。所有的組織移除部份和負荷方式皆參照 Kettler 等人的研究,且該研究 並未使用內固定器。

Kettler 等人的 ROM 分析結果如圖 D- 1 所示,是根據文獻內容的數據 整理而成;而兩節脊椎的分析結果如圖 D- 2 所示。考慮體外測試的個體差 異,在 PLIF 的結果上,結果是相近的。而在 TLIF 的趨勢上,向右彎曲及 向右扭轉的 ROM 皆比體外測試的結果高;向左彎曲及向左扭轉的 ROM 則 比體外測試的結果低。以此現象而言,認為本研究的模型較能確實表現出 小面關節移除與否的差異;且 Kettler 等人的個體差異較大,本研究的 ROM 結果,仍在其差異範圍之內。

79 Kettler et al., 2005.

0

Flexion Extension Left Lateral Bending

Right Lateral Bending

Left Axial Rotation

Flexion Extension Left Lateral Bending

Right Lateral Bending

Left Axial

Rotation

相關文件