• 沒有找到結果。

第五章 結論與未來展望

5.1 結論

5.1.2 氧化釔電容器之電性

5.1.3 氧化釔電容器之漏電流機制

將 Al/Ti/Y2O3/Y2O3+Zr/Si (3 W)和 Al/Ti/ZrN/Y2O3/Y2O3+Zr/Si (3,6,9 W) 的電容器結構加熱至 300 K、325K、350 K、375 K、400 K 等溫度下,量測 電子從閘極注入和基板注入的漏電流大小。

其中以 Al/Ti/Y2O3/Y2O3+Zr/Si (6 W)在退火溫度為 550 ℃且溫度在 350 K ~ 400 K 時 , 有 最 大 的 的 閘 極 注 入 之 蕭 基 能 障 為 1.15 eV 。 Al/Ti/ZrN/Y2O3/Y2O3+Zr/Si (3 W)在退火溫度為 850 ℃且溫度在 300 K ~ 400 K 時,有最大的的基板注入之蕭基能障為 1.03 eV。

5.2 未來展望

由於本實驗製作閘極氧化層的通氧量皆為固定,且有文獻指出不同的通 氧量可以改善閘極氧化層的品質,故可針對特性較好的疊層結構,進一步的 改變製作氧化層薄膜的通氧量,在對其電性加以討論,會對此薄膜更完整的 了解。另外本研究僅完成 MOSCAP 的結構,未來可將此結構製成 MOSFET,

並量測可靠度和載子遷移率等研究,必可對閘極氧化層 Y2O3摻 Zr 有更進一 步的了解。

參考文獻

[1] http://sound.zol.com.cn/2003/0123/54596.shtml.

[2] J. Bardeen and W. H. Brattrain, “The transistor, a semi-conductor triode”, Physical Review 74, pp. 230 (1948).

[3] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed., Wiley, New York (2007).

[4] 劉傳璽、陳進來,“半導體物理元件與製程-理論與實務”,五南文化出 版社,2008 年。

[5] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge of thermally oxidized silicon”, Journal of The Electrochemical Society 114, pp. 266 (1967).

[6] C. H. Choi, K. H. Oh, J. S. Goo, Z. Yu, and R. W. Dutton, “Direct tunneling current model for circuit simulation”, IEDM Technical Digest, pp. 735 (1999).

[7] F. C. Chiu, S. K. Fan, K. C. Tai, and J. Y. Lee, “Electrical characterization of tunnel insulator in metal insulator tunnel transistors fabricated by atomic force microscope”, Applied Physics Letters 87, pp. 243506-1 (2005).

[8] S. Pan, S. J. Ding, Y. Huang, Y. J. Huang, D. W. Zhang, L. K. Wang, and R.

Liu, “High-temperature conduction behaviors of HfO2/TaN-based metal-insulator-metal capacitors”, Journal of Applied Physics 102, pp.

073706-1 (2007).

[9] C. H. Liu, H. W. Chen, S. Y. Chen, H. S. Huang, and L. W. Cheng, “Current conduction of 0.72 nm equivalent-oxide-thickness LaO/HfO2 stacked gate

dielectrics”, Applied Physics Letters 95, pp. 012103-1 (2009).

[10] W. F. Smith (劉品均、施佑蓉譯),“材料科學概論”,麥格羅希爾 (2005)。

[11] Y. Li, J. Zhu, H.Liu, and Z. Liu, “Fabrication and characterization of Zr-rich Zr-aluminate films for high-k gate dielectric applications”, Microelectronic Engineering 83, pp. 1905 (2006).

[12] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics:

current status and materials properties considerations”, Applied Physics Review 89, pp. 5243 (2001).

[13] P. W. Peacock and J. Robertson, “Behavior of hydrogen in high dielectric constant oxide gate insulators”, Applied Physics Letters 83, pp. 2025 (2003).

[14] A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, “High quality La2O3 and A12O3 gate dielectrics with equivalent oxide thickness 5-10 Å”, Symposium on VLSI Technology Digest of Technical papers, pp. 16 (2000).

[15] J. Robertson, “High dielectric constant oxides”, The European Physical Journal Applied Physics 28, pp. 265 (2004).

[16] 鄭晃忠、劉傳璽,“新世代積體電路製程技術”,東華書局,2011 年。

[17] M. T. Ta, D. Briand, Y. Guhel, J. Bernard, J. C. Pesant, and B. Boudart,

“Growth and structural characterization of cerium oxide thin films realized on Si(111) substrates by on-axis r.f. magnetron sputtering”, Thin Solid Films 517, pp. 450 (2008).

[18] H. J. Quah, K. Y. Cheong, Z. Hassan, Z. Lockman, F. A. Jasni, and W. F.

Lim, “Effects of postdeposition annealing in argon ambient on metallorganic decomposed CeO2 gate spin coated on silicon”, Journal of The Electrochemical Society 157, pp. H6 (2010).

[19] Y. H. Wu, M. Y. Yang, A. Chin, W. J. Chen, and C. M. Kwei, “Electrical

characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 Å”, IEEE Electron Device Letters 21, pp. 341 (2000).

[20] H. J. Kim, J. H. Jun

,

and D. J. Choi, “A study on the characteristics of hydrated La2O3 thin films with different oxidation gases on the various annealing temperature”, Journal of Electroceramics 23, pp. 258 (2009).

[21] H. Kim, P. C. McIntyre, and K. C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition”, Applied Physics Letters 82, pp. 106 (2003).

[22] J. M. Gaskell, A. C. Jones, H. C. Aspinall, S. Taylor, P. Taechakumput, P. R.

Chalker, P. N. Heys, and R. Odedra, “Deposition of lanthanum zirconium oxide high-k films by liquid injection atomic layer deposition”, Applied Physics Letters 91, pp. 112912-1 (2007).

[23] W. J. Qi, R. Nieh, E. Dharmarajan, B. H. Lee, Y. Jeon, L. Kang, K. Onishi, and J. C. Lee, “Ultrathin zirconium silicate film with good thermal stability for alternativegate dielectric application”, Applied Physics Letters 77, pp.

1704 (2000).

[24] M. H. Tang, Y. C. Zhou, X. J. Zheng, Z. Yan, C. P. Chng, Z. Ye, and Z. S.

Hu, “Characterization of ultra-thin Y2O3 films as insulator of MFISFET structure”, Transactions of Nonferrous Metals Society of China 16, pp. s63 (2006).

[25] M. Spankova, I. Vavra, S. Chromik, S. Harasek, R. Luptak, J. Soltys, and K.

Husekova, “Structural properties of Y2O3 thin films grown on Si(1 0 0) and Si(1 1 1) substrates”, Materials Science and Engineering B 116, pp. 30 (2005).

[26] F. Paumier and R. J. Gaboriaud, “Interfacial reactions in Y2O3 thin films

deposited on Si(100) ”, Thin Solid Films 441, pp. 307 (2003).

[27] L. K. Chu, W. C. Lee, M. L. Huang, Y. H. Chang, L. T. Tung, C. C. Chang, Y.

J. Lee, J. Kwo, and M. Hong, “Metal-oxide-semiconductor devices with molecular beam epitaxy-grown Y2O3 on Ge”, Journal of Crystal Growth 311, pp. 2195 (2009).

[28] K. Matsunouchi, N. Komatsu, C. Kimura, H. Aoki, and T. Sugino, “Growth and properties of YAlO film synthesized by RF magnetron sputtering”, Applied Surface Science 255, pp. 5021 (2009).

[29] P. S. Das, G. K. Dalapati, D. Z. Chi, A. Biswas, and C. K. Maiti,

“Characterization of Y2O3 gate dielectric on n-GaAs substrates”, Applied Surface Science 256, pp. 2245 (2010).

[30] C. H. Liu, P. C. Juan, C. P. Cheng, G. T. Lai, H. Lee, Y. K. Chen, Y. W. Liu, and C. W. Hsu, “Structural properties of ultra-thin Y2O3 gate dielectrics studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS)”, IEEE International Nano Electronics Conference, pp. 1256 (2010).

相關文件