• 沒有找到結果。

使用 Auger 縱深分析-玻璃基板之薄膜

四、 結果與討論

4.2 Ag 反射層反射率之提升

4.2.2 使用 Auger 縱深分析-玻璃基板之薄膜

由上述可知道的機制為利用 Ni 來防止 ITO 的 O 與 Ag 形成 AgO,

在此利用 Auger 縱深分析來探討 Ni 是否形成 NiO。圖 4-16(A)為 Glass/ITO/Ag/Ni 之縱深分析圖,在蝕刻速率 0~200sec 之間 Ni 的訊

400 450 500 550 600 650 700

30

號與 O 的訊號同時出現,證明了 NiO 的存在。在 200~1000sec 時為

0 200 400 600 800 1000 1200 1400 0

Etch Time (sec)

Ag In O Ni

(A)

圖 4-16 (B)在玻璃基板沉積 ITO/Ni/Ag 之 Auger 縱深分析圖

0 200 400 600 800 1000 1200 1400 0

Etch Time (sec)

Ag In O Ni

(B)

圖 4-16(C) 在玻璃基板沉積 ITO/Ni/Ag/Ni 之 Auger 縱深分析圖

4.2.3 微結搆與原子力顯微鏡之分析

在此對於微結構作一系列分析,分別為在 RTA 與爐管 200oC 退火 1 小時之 SEM 探討。圖 4-17(A)(B)(C)分別為 ITO/Ag/Ni,ITO/Ni/Ag,

ITO/Ni/Ag/Ni 之 RTA 退火之 SEM 圖。圖 4-17(A)中表面為 Ni 可以發 現與圖 4-17(B)中表面 Ag 的粗糙有所差別,表面的 Ag 因形成 AgO 所 以有聚集的現象且相當的粗糙,相較於圖 4-17(A)(C)表面為 Ni 的形 態相差甚多。圖 4-18(A)(B)(C)分別為 ITO/Ag/Ni,ITO/Ni/Ag,

ITO/Ni/Ag/Ni 之爐管於空氣中退火。圖 4-18(B)中表面為 Ag 可以發 現與圖 4-17(B)中表面 Ag 的粗糙有所差別,且比 RTA 退火的

0 200 400 600 800 1000 1200 1400 0

Etch Time (sec)

Ag In O Ni

(C)

ITO/Ni/Ag 更為粗糙,後續將會使用原子力顯微鏡作表面粗糙度的量 測。圖 4-18(A)(C)表面為 Ni 的形態與圖圖 4-17(A)(C)表面為 Ni 的 形態之微結構相差不大。

圖 4-17 (A)ITO/Ag/Ni,(B)ITO/Ni/Ag,(C) ITO/Ni/Ag/Ni RTA200oC 退火之 SEM 表面微結構圖

(A)

(B)

(C)

圖 4-18 (A)ITO/Ag/Ni,(B)ITO/Ni/Ag,(C) ITO/Ni/Ag/Ni 爐管 200oC

(C)

(B)

(A)

圖 4-19(A)(B)(C)分別為 ITO/Ag/Ni,ITO/Ni/Ag,ITO/Ni/Ag/Ni 之 RTA 退火之 FIB Cross Section 圖。圖 14-9(A)中可以發現到 Ag 與 ITO 表面還算相當平整,圖 4-19(B)中可以明顯發現到 Ag 的聚集,

圖 4-19(C)中上下有 Ni 的保護所以 Ag 剖面圖看起來相當平整。

圖 4-19 (A)ITO/Ag/Ni,(B)ITO/Ni/Ag,(C) ITO/Ni/Ag/Ni RTA200oC 退火之 FIB Cross Section 圖

(C) (B) (A)

ITO Ag

ITO Ag

Glass sub.

ITO

Ag

圖 4-20 為原子力顯微鏡分析,藉由 AFM 的分析來對 RTA 與爐管 200oC 下退火之 Ag 表面作粗糙度的量測。圖 4-20(A)為 RTA

Glass/ITO/Ni/Ag,圖 4-20(B)為爐管 Glass/ITO/Ni/Ag。在 AFM 的量 測中可以發現使用 RTA 退火的表面粗糙度 Rms=7.54nm,使用爐管退 火的表面粗糙度 Rms=16.51nm,相差了 2.2 倍之多,所以也在次證明 Ag 使用 RTA 於 N2下退火比爐管於空氣中退火較不會聚集。

圖 4-20 (A)ITO/Ni/Ag 於 RTA 退火 Rms=7.54nm 與(B)ITO/Ni/Ag 在空

(B)

(A)

4.2.4 NiO 穿透率之探討

400 450 500 550 600 650 700

50

Glass/NiO(air 200-1hr) Glass/NiO(air 270-1hr)

圖 4-22 Ni 沉積於 Glass 基板退火溫度變化之穿透率關係圖

4.2.5 在 Sapphire 基板成長 GaN 並沉積 Mirror 之反射率

在此我們直接在雙拋 Sapphire 基板成長 u-GaN,並在 u-GaN 上 沉積 ITO/Ag/Ni 之相關系列的反射層與 barrier layer,藉由此實驗 來模擬 Ni/Ag 系列之材料組合於 GaN 元件上之反射率。如圖 4-23 所 示,仍然可以發現在 RTA 200oC 退火後的 ITO/Ag/Ni 之反射率在 470nm 只有 70%,ITO/Ni/Ag 之與 ITO/Ni/Ag/Ni 之反射率仍維持 90~100%(以 Al 為基準) 。在此更能證實使用 ITO/Ni/Ag 系列之反射材料能有效 的應用於藍光 GaN 之元件上。

400 450 500 550 600 650 700

50

圖 4-23 在雙拋 Sapphire 基板上成長 u-GaN 應用於 RTA 200oC 退火 barrier 是否形成 NiO。圖 4-24(A)為 Sapphire/u-GaN/ITO/Ag/Ni 之 縱深分析圖,在蝕刻速率 0~200sec 之間 Ni 的訊號與 O 的訊號同時出 現,證明了 NiO 的存在。在 200~700sec 時為 Ag 之訊號,O 訊號在 500sec 開始與 Ag 同時出現,所以證明了 ITO 與 Ag 之間的 O 與 Ag 形成 AgO,

如前面所提到的 AgO 造成反射率之下降。

400 450 500 550 600 650 700

30

圖 4-24(A) 在 Sapphire 基板成長 u-GaN 沉積 ITO/Ag/Ni 之 Auger

Etch Time (sec)

Ag O Ni

(A)

圖 4-24(B) 在 Sapphire 基板成長 u-GaN 沉積 ITO/Ni/Ag 之 Auger 縱深分析圖

圖 4-24(C)為 Sapphire/u-GaN/ITO/Ni/Ag/Ni 之縱深分析圖,在 蝕刻速率 0~100sec 之間 Ni 的訊號與 O 的訊號同時出現,證明了 NiO

Etch Time (sec)

Ag In O Ni

(B)

圖 4-24(C) 在 Sapphire 基板成長 u-GaN 沉積 ITO/Ni/Ag/Ni 之 Auger 縱深分析圖

0 200 400 600 800

0 100000 200000 300000 400000 500000 600000 700000 800000

Area (CPS*eV)

Etch Time (sec)

Ag In O Ni

(C)

五、 結論與未來工作 5-1 結論

1.在紅光發光二及體中,利用 SiC 取代傳統 GaAs 基板可以提升飽和 電流 4 倍左右。

2.在使用 Wafer Bonding 將 AlGaInP 磊晶層轉移到 SiC 基板之元件配 合 BeAu mirror LED 與 CV-LED(傳統 LED)發光強度提升 76%,BeAu -Roughening LED 可提升發光強度 80%,BeAu-Roughening-TiPtAu LED 可提升發光強度 81%,Ag-Roughening-TiPtAu LED 可提升發光強度 82%。

3.使用 Diffusion Barrier layer 確實可以阻擋 In 之擴散。

4.使用 RTA 退火確實有比在空氣中使用爐管退火更有效避免 Ag 的氧 化。

5.Ni 形成 NiO 可以防止 Ag 氧化並且提升在 470nm 之反射率。並且在 Sapphire 基板成長 u-GaN 並沉積 mirror,在 470nm 仍然有 90%以上 反射率。

5-2 未來之工作

未來希望能將 Ni/Ag 此系列配合晶圓接合技術製作高亮度與高 功率之藍光發光二極體,並且嘗試使用 SiC 與鑽石(Diamond

)基板製作發光二極體。因為 SiC 之熱傳導係數為 490W/mK,而鑽石 基板之熱傳導係數約為 1000~2000W/mK(視長晶品質而定) 。利用高 熱傳導係數之基板一定可以製作出 High Power & High Brightness 之發光二極體。

在尋找相關之 Barrier 能夠取代 Ni 之材料並應用於鏡面反射層 與 P-type 之 Ohmic contact,並將 Mirror 提升至 UV 光波段可以達 到 90%以上之反射率。

參考文獻

[1] Wright, A. F., and Nelson, J. S. Appl. Phys. Lett. 66, pp.3051, 1995.

[2] 史光國 , 工業材料 148 期 , pp.149 , 1999.

[3] K. H. Kish, J.G.Yu, C. P. Kuo, R. M. Flectcher, T. D.

Osentowski, L. J. Stinson, and M. G. Craford, Appl. Phys.

Letter., 58, pp.1010, 1991.

[4] W. C. Peng, Y. S. Wu, “High-power AlGaInP light-emitting diodes with metal substrates fabricated by wafer

bonding" Appl. Phys. Lett., 84, pp.11, 2004.

[5] 彭顯智 ,"不同旋轉角度之砷化鎵晶圓接合", 國立交通大學 , 碩士論文 , 民國 93 年 7 月.

[6] 劉柏均 ,"三五族化合物半導體晶圓接合之基本研究及應用" , 國立交通大學 , 博士論文 , 民國 94 年 7 月.

[7] 李天錫等編著 ,"晶圓接合技術及其應用" , 工業材料雜誌 , 170 期, 146-157 頁 , 民國 90 年 2 月.

[8] T. Suga et al. “A new wafer-bonder of ultra-high precision using surface activated bonding(SAB)

concept,"Electronic Components and Technology

Conference, 2001.

[9] 盧昶鳴 ,"藉由晶圓接合與雷射剝離技術的搭配將氮化鎵薄膜 整合在銅或矽基板上" , 國立交通大學, 碩士論文,民國 91 年 6 月.

[10] K. T. Wan, et al. “Pressurized internal lenticular cracks at healed mica interface" J. Mater. Res., 8, pp.

1128-1136, 1993.

[11] Q. T. Tong and U. Gosele, “Semiconductor wafer bonding recent developments" Mater. Chem. And Phys., 37, pp.

101-127, 1994.

[12] Kettel, Introduction to Solid State Physics, Ch4-5.

[13] D. A. Vanderwater, I. H. Tan, G. E. Hler, D. C. Defevere, and F. A. Kish, “Light-Brightness AlGaInP Light-Emitting Diodes Proceedings of The IEEE, Vol.85, No.11,

pp.1752-1764 , November 1997.

[14] D. A. Vanderwater, I. H. Tan, G. E. Hler, D. C. Defevere, and F. A. Kish, “Light-Brightness AlGaInP Light-Emitting Diodes Proceedings of The IEEE, Vol.85, No.11,pp.1756 November 1997.

[15] Z. Huang, C. C. Lin, and D. G. Deppe, pontaneous Lifetime and Quantum Efficiency in Light Emitting Diode Affected by a Close Metal Mirror. IEEE Journal of Quantum

Electronics, Vol.29. No. 12. December 1993.

[16] J. L. Vossen, Transparent Conducting Films , Physics of Thin Film, ,pp. 1-64, 9(1977).

[17] A. Zakauskas, M. S. Shur and R. Caska, “Introduction to Solid-State Lighting" John Wiley and Sons, 2002.

[18] X. A. Cao, et al. “Optimization of current spreading metal layer for GaN/InGaN-based light emitting diodes"

Solid-State Electronics, Vol.46, pp. 1235-1239, 2002.

[19] June-O Song, et al. “Improvement of the light output of InGaN-Based light-emitting diodes using Cu-doped indium oxide/indium tin oxide p-type electrodes," Appl. Phys.

Lett. Vol.86, pp.213505, 2005.

[20] S. S. Schad et al. “Extraction Efficiency of GaN-based LEDs" Phys. Stat. Sol.(a) Vol.188, pp.127, 2001.

[21] J. J. Wierer et al. “High-power AlGaInN flip-chip light-emitting diodes," Appl. Phys. Lett. Vol.78, No.22.

2001.

[22] C. Huh et al. “Improved light-output and electrical performance of InGaN-based light-emitting diodes by microroughening of the p-GaN surface," J. Appl. Phys.

Vol.93, No.11, 2003.

[23] T. Fujii et al. “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface

roughening," Appl. Phys. Lett. Vol.84, No.6, pp.855, 2004.

[24] T. Gessmann et al. “Omnidirectional Reflective Contacts for Light-Emitting Diodes,"IEEE electron device letters, Vol.24, No.10, 2003.

[25] R. H. Horng et al. “Characterization of Large-Area AlGaInP/Mirror/Si Light-Emitting Diodes Fabricated by Wafer Bonding ," Jpn, J. Appl. Phys., Vol.43, No.5A, pp.2510, 2004.

[26] 余彬海, 王圭浩 “Junction Temperature and Thermal

Resistance Restrict the Developing of High-power LED,"

Chinese Journal of Luminescence, Vol.26, No.6, 2005.

[27] K. R. Krames et al. “High-Brightness AlGnInP

light-emitting diodes," Proc. SPIE, Vol. 3938, No.2.

2000.

[28] D. S. Wuu et al. “Vertical-conducting p-side-up

GaN/mirror/Si light-emitting diodes by laser lift-off and wafer-transfer techniques," Phys. Stat. sol.(a) Vol.201, No.12, pp.2699, 2004.

[29] R. H. Horng et al. “High-Power GaN Light-Emitting Diodes with patterned copper substrates by electroplating,"

Phys. Stat. Sol.(a), Vol.201, No.12, 2004

[30] June-O Song et al. “Ohmic and degradation mechanisms of Ag contacts on p-type GaN." Appl. Phys. Lett. 86,pp.

062104, 2005.

[31] Ja-Yeon Kim et al. “Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting diodes." Appl. Phys.

Lett. 88 ,pp.043507, 2006.

[32] Hyunsoo Kim et al. “High-Reflectance and Thermally stable AgCu Alloy p-type Reflectors for GaN-Based Light-Emitting

Diodes." IEEE Photonics Technology Letter. Vol.19, No.5, March 1, 2007.

[33] 施敏, “半導體元件物理與製作技術(第二版)"民國 92 年 9 月.

[34] 彭韋智, “Enhancement the power and the brightness of light emitting diodes." 國立交通大學, 博士論文. 民國 95 年 7 月.

[35] 徐志偉, “High-Power GaN-based Light-Emitting Diodes Fabricated by Wafer Bonding and Electroplating

Technology." 國立交通大學, 碩士論文. 民國 95 年 7 月.

[36] 汪建民, “材料分析" 中國材料科學學會. 民國 94 年 3 月.

相關文件