• 沒有找到結果。

結論

在文檔中 中 華 大 學 (頁 46-94)

的趨勢,然而當裂縫發生在介金屬化合物層的中間位置時,其能量 釋放率則均呈現遞減的趨勢。

4.考量變數為介金屬化合物厚度時,則對於應力強度因子(KI、KII)與 能量釋放率(G)均未有一明顯之影響。

參考文獻

[1] S. E. Yamada, “A Fracture Mechanics Approach to Soldered Joint Cracking,” IEEE Transactions on Components, Packaging and Manufacturing Technology Vol. 12, Issue 1, pp. 99-104, March 1989.

[2] J. H. Lau, “Solder Joint Reliability of Flip Chip and Plastic Ball Grid Array Assemblies Under Thermal, Mechanical, and Vibrational Condition,” IEEE Transactions on Components, Packaging and Manufacturing Technology Vol. 19, No.4, pp. 728-735, November 1996.

[3] P. L. Tu, and Y. C. Chan, “Effect of Intermetallic Compounds on the Thermal Fatigue of Surface Mount Solder Joints,” IEEE Transactions on Compounds, Packaging, and Manufacturing Technology B, Vol. 20, No. 1, pp. 87-93, February 1997.

[4] A. C. K. So, Y. C. Chan, and J. K. L. Lai, “Aging Studies of Cu-Sn Intermetallic Compounds in Annealed Surface Mount Solder Joints,”

IEEE Transactions oc Components, Packaging, and Manufacturing Technology B, Vol. 20, No. 2, pp. 161-166, May 1997.

[5] Y. C. Chan, P. L. Tu, A. C. K. So, and J. K. L. Lai, “Effect of Intermetallic Compounds on the Shear Fatigue of Cu/63Sn-37Pb Solder Joints,” IEEE Transactions on Components, Packaging, and Manufacturing Technology B, Vol. 20, No. 4, pp. 463-469, November 1997.

[6] P. T. Vianco, J. J. Stephens, and J. A. Rejent, “Intermetallic

Compound Layer Development During the Solid State Thermal Aging of 63Sn-37Pb Solder/Au-Pt-Pd Thick Film Couples,” IEEE Transactions on Components, Packaging, and Manufacturing Technology A, Vol. 20, No. 4, pp. 478-490, December 1997.

[7] T. Saitoh, H. Matsuyama, and M. Toya, “Linear Fracture Mechanics Analysis on Growth of Interfacial Delamination in LSI PLASTIC Packages under Temperature Cyclic Loading,” IEEE Transactions on Components, Packaging and Manufacturing Technology Vol. 21, No.4, pp. 422-427, November 1998.

[8] S. Choi, T. R. Bieler, J. P. Lucas, and K. N. Subramanian,

“Characterization of the Growth of Intermetallic Interfacial Layers of Sn-Ag and Sn-Pb Eutectic Solders and Their Composite Solders on Cu Substrate During Isothermal Long-Term Aging,” Journal of Electronic Materials, pp. 1209-1215, November 1999.

[9] S. Wiese, F. Feustel, S. Rzepka, and E. Meusel, “Creep and Crack Propagation in Flip Chip SnPb37 Solder Joints,” Electronic Components and Technology Conference, 1999.

[10] A. O. Ayhan and H. F. Nied, “Finite Element Analysis of Interface Cracking in Semiconductor Packages,” IEEE Transactions on Components and Packaging Technology Vol. 22, No.4, pp. 503-511, December 1999.

[11] J. H. Lau, and S. W. R. Lee, “Temperature Dependent Popcorning Analysis of Plastic Ball Grid Array Package During Solder Reflow With Fracture Mechanics Method,” Transactions of the ASME Vol.

Randomness of Cu-Sn Intermetallic Compound Layer Thickness on Reliability of Surface Mount Solder Joints,” IEEE Transactions on Advanced Packaging, Vol. 23, No. 2, pp. 277-284, May 2000.

[13] R. J. Coyle, and P. P. Solan, ”The Influence of Test Parameters and Package Design Features on Ball Shear Test Requirements,”

IEEE/GPMP Int’l Electronics Manufacturing Technology Symposium, 2-3 pp.168-177, October 2000.

[14] P. L. Tu, Y. C. Chan, K. C. Hung, and J. K. L. Lai, “Comparative Study of Micro-BGA Reliability Under Bending Stress,” IEEE Transactions on Advanced Packaging, Vol. 23, No. 4, pp. 750-756, November 2000.

[15] K. L. Lin, and K. T. Hsu, “Manufacturing and Materials Properties of Ti/Cu/Electroless Ni/Solder Bump on Si,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 4, pp.

657-660, December 2000.

[16] J. H. Lau, S. W. R. Lee, and C. Chang, “Effect of Underfill Material Properties on the Reliablity of Solder Bumped Flip Chip on Board with Imperfect Underfill Encapsulants,” IEEE, 2000.

[17] L. L. Mercado, V. Sarihan, and T. Hauck, “An Analysis of Interface Delamination In Flip-Chip Packages,” Electronic Components and Technology Conference, 2000.

[18] Y. C. Chan, P. L. Tu, C. W. Tang, K. C. Hung, and J. K. L. Lai,

“Reliability Studies of µBGA Solder Joints-Effect of Ni-Sn Intermetallic Compound,” IEEE Transactions on Advanced Packaging, Vol. 24, No. 1, pp. 25-32, February 2001.

Compounds on Vibration Fatigue of µBGA Solder Joint,” IEEE Transactions on Advanced Packaging, Vol. 24, No. 2, pp. 197-205, May 2001.

[20] H. Ezawa, M. Miyata, S. Honma, H. Inoue, T. Tokuoka, J. Yoshioka, and M. Tsujimura, “Eutectic Sn-Ag Solder Bump Process for ULSI Flip Chip Technology,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 24, No. 4, pp. 275-281, October 2001.

[21] G. W. Xiao, P. C. H. Chan, A. Teng, J. Cai and M. M. F. Yuen,

“Effect of Cu Stud Microstructure and Electroplating Process on Intermetallic Compounds Growth and Reliability of Flip-Chip Solder Bump,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 4, pp. 682-690, December 2001.

[22] J. W. Nah, and K. W. Paik, “Investigation of Flip Chip Under Bump Metallization Systems of Cu Pads,” IEEE Transactions on Components and Packaging Technologies, Vol. 25, No. 1, pp. 32-37, March 2002.

[23] S. Y. Jang, J. Wof, O. Ehrmann, H. Gloor, H. Reichl, and K. W. Paik,

“Pb-Free sn/3.5Ag Electroplating Bumping Process and Under Bump Metallization (UBM),” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No. 3, pp. 193-202, July 2002.

[24] M. Li, K. Y. Lee, D. R. Olsen, W. T. Chen, B. T. C. Tan, and S.

Mhaisalkar, “Microstructure, Joint Strength and Failure Mechanisms of SnPb and Pb-Free Solders in BGA Packages,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No. 3, pp.

Reflow Time and Temperature on Cu-Sn Intermetallic Compound Layer Reliability,” Journal of Microelectronics Reliability, Vol. 42, Lssue 8, pp. 1229-1234, August 2002.

[26] Y. Uegai, A. Kawazu, Q. Wu, H. Matsushima, M. Yasunaga, and H.

Shimamoto, “New Thermal Fatigue Life Prediction Method for BGA/FBGA Solder Joints with Basic Crack Propagation Study,”

Electronic Components and Technology Conference, 2002.

[27] C. Kanchanomai, Y. Miyashita, and Y. Mutoh, “C*-parameter Approach to Low Cycle Fatigue Crack of Solders,” Electronic Components and Technology Conference, 2002.

[28] J. F. Gong, G. W. Xiao, P. H. Chan, R. S. W. Lee, M. M. I. Yuen, “A Reliability Comparison of Electroplated and Stencil Printed Flip-Chip Solder Bumps Based on UBM Related Intermetallic Compound Growth Properties,” IEEE Electronic Components and Technology Conference, Proceedings, 53rd, pp. 685-691, May 2003.

[29] H. J. Albrecht, A. J. K. Muller, W. H. Muller, J. S. J. Villain, A Vogliano, “Interface Reactions in Microelectronic Solder Joints and Associated Intermetallic Compounds: An Investigation of their Mechanical Properties using Nanoindentation,” IEEE Electronic Packging and Technology, 5th Conference 10-12, pp. 726-731, December 2003.

[30] C. Kanchanomai, and Y. Mutoh, “Influence of Temperature on Low Cycle Fatigue and Fatigue Crack growth of Sn-Ag Eutectic Solder,”

Electronic Components and Technology Conference, 2003.

[31] L.L. Mercado, Senior Member, and V. Sarihan, “Evaluation of Die

Components and Technology Conference, 2003.

[32] K. Harada, S. Baba, Q. Wu, H. Matsushima, T. Matsunaga, and Y.

Uegai, “Analysis of Solder Joint Fracture under Mechanical Bending Test,” Electronic Components and Technology Conference, 2003.

[33] P. Gupta, R. Doraiswami, and R. Tummala, “Effect of Intermetallic Compounds on Reliability of Sn-Ag-Cu Flip Chip Solder Interconnects for Different Substrate Pad Finishes and Ni/Cu UBM,”

IEEE Electronic Components and Technology Conference, Vol. 1, 1-4, pp. 68-74, June 2004.

[34] C. t. Pang, C. T. Kuo, K. N. Chiang, “Experimental Characterization and Mechanical Behavior Analysis on Intermetallic Compounds of 96.5Sn-3.5Ag and 63Sn-37Pb Solder Bump with TI-CU-NI UBM on Copper Chip,” IEEE Electronic Components and Technology Conference, Vol. 1, 1-4, pp. 90-97, June 2004.

[35] Z. Chen, “Lifetime of Solder Joint and Delamination in Flip Chip Assemblies, ”Business of Electronic Product Reliability and Liability Conference , 2004.

[36] C. Andersson, D. R. Andersson, P. E. Tegehall, and J. Liu, “Effect of Different Temperature Cycle Profiles on the Crack Propagation and Microstructural Evolution of Lead Free Solder Joint of Different Electronic Components,” Thermal and Mechanical Simulation and Experiments in Micro-Electronics and Micro-Systems Conference,

Modelling of Crack Detection Test,” Thermal and Mechanical Simulation and Experiments in Micro-Electronics and Micro-Systems Conference, 2004.

[38] J. Auersperg, D. Vogel, and B. Michel, “Crack and Delamination Risk Evaluation of Thin Silicon Applications Based on Fracture Mechanics Approaches,” Thermal and Mechanical Simulation and Experiments in Micro-Electronics and Micro-Systems Conference, 2004.

[39] 李英舜, “塑封球柵陣列電子構裝之破裂延伸,” 國立清華大學碩 士論文, 2000.

[40] 黃詩翔, “利用有限元素法分析介金屬化合物對電子構裝在熱 循 環 測 試 下 銲 錫 接 點 疲 勞 壽 命 之 影 響,” 中 華 大 學 碩 士 論 文,2005.

41

表 3-1 介金屬化合物初始厚度及擴散係數值

表 3-2 不同熱循環週次下的介金屬化合物厚度 [40]

IMC 厚度 (mm)

0.000757 0.000948 0.001139 0.001330 0.001521 96.5Sn-3.5Ag Solder

- Cu6Sn5

d0 0.757 m

D 3.98 10-7-

42

表 3-3 FC-PBGA 各組成元件之機械性質 [40]

Elastic Modulus 103(MPa)

Poisson Ratio

CTE 10-6(1/oC)

Temperature Temperature -

-40 25 50 125 -

-40 25 50 125 Cu6Sn5 85.6 85.6 85.6 85.6 0.31 16.3 17.6 18.1 19.3 Copper Pad 69 0.34 15.3 16.4 16.7 17.3

Die 192.1 191 190.6 190 0.278 1.5 2.6 2.8 3.1

Underfill Viscoelastic 0.3 20

Organic Substrate 26(X , Z) 11(Y)

0.11(X , Z) 0.39(XY ,

YZ)

13(X , Z) 57(Y) 96.5Sn-3.5Ag

Solder Elastic-Plastic-Creep 0.4 22.5 PCB 22(X , Z)

10(Y)

0.11(X , Z) 0.28(XY ,

YZ)

18(X , Z) 70(Y)

Solder Mask 2.1 0.3 49.7

43

表 3-4 Hyperbolic Sine Law Model 參數

Par.

C

1

C

2

C

3

C

4

Unit s-1 - MPa-1 K

96.5Sn-3.5Ag

Solder 127.668 3.3 0.1224 6360

表 3-5 Viscoelastic Underfill Model 參數

0

HR

(K)

E

0

(MPa) E

C

1 1

C

2 2

C

3 3

15644 5630 1300 0.264 0.198 0.200 451 0.536 30435

44

表 4-1 裂縫位於介金屬化合物與銅墊片界面處之應力強度因子 KI

KI 值 (MPa-mm1/2) 裂縫長度(mm) IMC

厚度

(mm) 0.04 0.08 0.12 0.16 0.2

0.000757 5.783753 4.251986 3.414465 3.103712 3.251828

0.000948 5.632116 4.252426 3.414905 3.179530 3.252268

0.001139 5.632116 4.253306 3.796637 3.256228 3.328527

0.001330 6.087026 4.256386 3.566982 3.258428 3.328087

0.001521 5.708375 4.254186 3.567422 3.334247 3.338967

45

表4-2 裂縫位於介金屬化合物與銅墊片界面處之應力強度因子 KII

KII 值 (MPa-mm1/2) 裂縫長度(mm) IMC

厚度

(mm) 0.04 0.08 0.12 0.16 0.2

0.000757 3.684298 2.199172 1.669323 1.147425 1.542516

0.000948 3.684298 2.199172 1.593065 1.137715 1.497113

0.001139 3.682538 2.123353 1.593065 1.087078 1.459292

0.001330 3.682538 2.123353 1.593505 1.049345 1.429009

0.001521 3.757916 2.176732 1.593065 1.019150 1.398770

46

表4-3 裂縫位於介金屬化合物與銅墊片界面處之相位角

Phase Angle 裂縫長度(mm) IMC

厚度

(mm) 0.04 0.08 0.12 0.16 0.2

0.000757 32.478862 13.703746 7.262139 15.350868 24.171240

0.000948 33.178516 14.662577 8.509305 15.008902 23.046917

0.001139 33.178516 16.554294 14.241706 12.153993 21.457225

0.001330 31.154966 22.866090 9.327393 5.647043 22.581525

0.001521 33.357559 18.408835 10.507801 5.526926 20.259711

47

表4-4 裂縫位於介金屬化合物與銅墊片界面處之能量釋放率值

能量釋放率值 (Pa-mm) 裂縫長度(mm) IMC

厚度

(mm) 0.04 0.08 0.12 0.16 0.2

0.000757 550.15542 268.09127 168.99451 128.09951 151.54581

0.000948 529.90365 268.13504 166.11915 133.41313 149.96473

0.001139 529.75197 264.38850 198.32505 137.86989 154.52770

0.001330 592.12115 264.69513 178.55738 137.09447 153.47017

0.001521 546.43078 267.16141 178.57769 142.21152 153.31842

48

表4-5 裂縫位於介金屬化合物層的中間位置之應力強度因子 KI

KI 值 (MPa-mm1/2) 裂縫長度(mm) IMC

厚度

(mm) 0.04 0.08 0.12 0.16 0.2

0.000757 5.788211 4.236300 3.439372 3.355485 3.313541

0.000948 5.746268 4.613792 3.774920 3.774920 3.355485

0.001139 5.746268 4.194356 3.439372 3.355485 3.774920

0.001330 5.662381 4.404074 3.565203 3.774920 3.774920

0.001521 5.746268 4.362130 3.523259 3.774920 3.774920

49

表4-6 裂縫位於介金屬化合物層的中間位置之應力強度因子 KII

KII 值 (MPa-mm1/2) 裂縫長度(mm) IMC

厚度

(mm) 0.04 0.08 0.12 0.16 0.2

0.000757 4.194356 3.713748 3.103823 2.181065 1.509968

0.000948 4.068525 3.642444 3.439372 2.264952 1.459636

0.001139 4.152412 3.900751 3.313541 2.264952 1.417692

0.001330 4.152412 3.962130 3.313541 2.055234 1.354777

0.001521 4.152412 3.942695 3.355485 1.971347 1.384137

50

表4-7 裂縫位於介金屬化合物層的中間位置之相位角

Phase Angle 裂縫長度(mm) IMC

厚度

(mm) 0.04 0.08 0.12 0.16 0.2

0.000757 35.380274 16.020287 8.027233 4.289149 23.895168

0.000948 34.738622 21.801411 15.524112 2.544801 22.416139

0.001139 35.852915 23.267703 2.792698 3.577012 11.309932

0.001330 33.098389 16.448603 10.660347 4.447386 9.462317

0.001521 35.852915 22.932105 10.124665 6.340198 12.528806

51

表4-8 裂縫位於介金屬化合物層的中間位置之能量釋放率值

能量釋放率值 (Pa-mm) 裂縫長度(mm) IMC

厚度

(mm) 0.04 0.08 0.12 0.16 0.2

0.000757 539.82933 335.31368 226.75656 169.21246 140.08722

0.000948 523.73337 365.06802 275.52781 204.75000 141.46341

0.001139 531.01931 346.62159 240.97532 173.15281 171.78554

0.001330 520.90821 370.77172 250.28724 195.17789 169.94269

0.001521 531.01931 365.26397 250.10137 191.60927 170.79227

52

圖 3-1 二維 FC-PBGA 對角剖面結構示意圖

53

3-2 銲錫凸塊配置圖

54

(a)

(b)

(C)

圖3-3 (a) 二維有限元素之全域網格化模型;

(b) 局部網格化模型與裂縫假設位置示意圖 (c) 次局部網格化模型

55

圖 3-4 裂縫局部有限元素網格化模型

裂縫位置

56

圖3-5 奇異元素(Singularity Element)之元素及節點分布圖

57

圖 3-6 熱循環測試曲線圖

58

Mode I

(Sliding Mode ) (Tearing Mode ) (Opening Mode )

Mode II Mode III

圖3-7 破裂力學破裂模式

59

圖 3-8 雙材料界面脫層裂縫尖端示意圖

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Time (Sec)

0 1 2 3 4 5

St re ss I n te n s it y F act o r ; K

I

(M P a -m m

/21

)

圖 3-9 應力強度因子KI對時間關係圖

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Time (Sec)

0 1 2 3 4

Str ess I n te n s it y F a ct o r ; K

II

(M P a -m m

/21

)

圖 3-10 應力強度因子KII對時間關係圖

62

圖4-1 最可能發生破壞的錫球位置示意圖 最可能發生破壞之錫球位置

1000 2000 3000 4000 5000 No. of Elements

4 4.1 4.2 4.3 4.4 4.5

S tr e s s In te n s it y F a c to r ; K

I

(M Pa -m m

/21

)

2 2.1 2.2 2.3 2.4 2.5

S tr e ss I n te n s it y F acto r ; K

II

(M Pa -m m

/21

)

KI KII

圖4-2 次局部模型中元素總數對應力強度因子(KI、KII)之關係圖

0.0001 8E-005 6E-005 4E-005 2E-005 0

Crack Tip Element Size (mm)

3 4 5 6 7

S tre s s In te n s it y F a c to r ; K

I

(M Pa -m m

/21

)

0 2 4 6

St re ss I n te n s it y F a c to r ; K

II

(M P a -m m

/21

)

KI KII

圖4-3 裂縫尖端奇異元素大小對應力強度因子(KI、KII)之關係圖

0.04 0.08 0.12 0.16 0.2

Crack Length (mm)

0 2 4 6 8 10

S tr ess I n ten s it y F a c to r ; K

I

(M P a -mm

/21

)

IMC = 0.000757 (mm) IMC = 0.000948 (mm) IMC = 0.001139 (mm) IMC = 0.001330 (mm) IMC = 0.001521 (mm)

Interfacial Crack

圖4-4 裂縫位於介金屬化合物與銅墊片界面處之裂縫長度對應力強 度因子 KI關係圖

0.04 0.08 0.12 0.16 0.2

Crack Length (mm)

0 2 4 6 8 10

S tr e ss I n ten s it y F a cto r ; K

II

(M P a -m m

/21

)

IMC = 0.000757 (mm) IMC = 0.000948 (mm) IMC = 0.001139 (mm) IMC = 0.001330 (mm) IMC = 0.001521 (mm)

Interfacial Crack

圖4-5 裂縫位於介金屬化合物與銅墊片界面處之裂縫長度對應力強 度因子KII關係圖

0.04 0.08 0.12 0.16 0.2

Crack Length (mm)

0 10 20 30 40 50 60 70 80 90

P h a se A n g le ; de gr e e )

IMC = 0.000757 (mm) IMC = 0.000948 (mm) IMC = 0.001139 (mm) IMC = 0.001330 (mm) IMC = 0.001521 (mm)

Interfacial Crack

圖4-6 裂縫位於介金屬化合物與銅墊片界面處之裂縫長度對相位角 關係圖

0.04 0.08 0.12 0.16 0.2

Crack Length (mm)

0 200 400 600 800 1000

En e rgy R el ea se R at e ; G ( Pa - m m )

IMC = 0.000757 (mm) IMC = 0.000948 (mm) IMC = 0.001139 (mm) IMC = 0.001330 (mm) IMC = 0.001521 (mm)

Interfacial Crack

圖4-7 裂縫位於介金屬化合物與銅墊片界面處之裂縫長度對能量釋 放率關係圖

0.0006 0.0008 0.001 0.0012 0.0014 0.0016

IMC Thickness (mm)

0 2 4 6 8 10

S tr e s s I n te ns it y Fa c tor ; K

I

(M P a -m m

/21

)

Crack = 0.04 (mm) Crack = 0.08 (mm) Crack = 0.12 (mm) Crack = 0.16 (mm) Crack = 0.20 (mm)

Interfacial Crack

圖4-8 裂縫位於介金屬化合物與銅墊片界面處之介金屬化合物厚度 對應力強度因子 KI關係圖

0.0006 0.0008 0.001 0.0012 0.0014 0.0016

IMC Thickness (mm)

0 2 4 6 8 10

S tr e ss I n ten s it y F acto r ; K

II

(M P a -m m

/21

)

Crack = 0.04 (mm) Crack = 0.08 (mm) Crack = 0.12 (mm) Crack = 0.16 (mm) Crack = 0.20 (mm)

Interfacial Crack

圖4-9 裂縫位於介金屬化合物與銅墊片界面處之介金屬化合物厚度 對應力強度因子KII關係圖

0.0006 0.0008 0.001 0.0012 0.0014 0.0016

IMC Thickness (mm)

0 10 20 30 40 50 60 70 80 90

Ph ase A n g le ; de g re e )

Crack = 0.04 (mm) Crack = 0.08 (mm) Crack = 0.12 (mm) Crack = 0.16 (mm) Crack = 0.20 (mm)

Interfacial Crack

圖4-10 裂縫位於介金屬化合物與銅墊片界面處之介金屬化合物厚度 對相位角關係圖

0.0006 0.0008 0.001 0.0012 0.0014 0.0016

IMC Thickness (mm)

0 200 400 600 800 1000

En e rgy R e le a s e R a te ; G ( P a - m m )

Crack = 0.04 (mm) Crack = 0.08 (mm) Crack = 0.12 (mm) Crack = 0.16 (mm) Crack = 0.20 (mm)

Interfacial Crack

圖 4-11 裂縫位於介金屬化合物與銅墊片界面處之介金屬化合物厚度 對能量釋放率關係圖

0.04 0.08 0.12 0.16 0.2

Crack Length (mm)

0 2 4 6 8 10

Str e ss I n ten s it y F a cto r ; K

I

(M Pa -m m

/21

)

IMC = 0.000757 (mm) IMC = 0.000948 (mm) IMC = 0.001139 (mm) IMC = 0.001330 (mm) IMC = 0.001521 (mm)

Crack Within IMC

圖4-12 裂縫位於介金屬化合物層中間處之裂縫長度對應力強度因子 KI關係圖

0.04 0.08 0.12 0.16 0.2

Crack Length (mm)

0 2 4 6 8 10

S tr e ss I n ten s it y F a cto r ; K

II

(M Pa -m m

/21

)

IMC = 0.000757 (mm) IMC = 0.000948 (mm) IMC = 0.001139 (mm) IMC = 0.001330 (mm) IMC = 0.001521 (mm)

Crack Within IMC

圖4-13 裂縫位於介金屬化合物層中間處之裂縫長度對應力強度因子 KII關係圖

0.04 0.08 0.12 0.16 0.2

Crack Length (mm)

0 10 20 30 40 50 60 70 80 90

Ph ase A n g le ; de gr e e )

IMC = 0.000757 (mm) IMC = 0.000948 (mm) IMC = 0.001139 (mm) IMC = 0.001330 (mm) IMC = 0.001521 (mm)

Crack Within IMC

圖4-14 裂縫位於介金屬化合物層中間處之裂縫長度對相位角關係圖

0.04 0.08 0.12 0.16 0.2

Crack Length (mm)

0 200 400 600 800 1000

En e rgy R el ea se R at e ; G ( Pa - m m )

IMC = 0.000757 (mm) IMC = 0.000948 (mm) IMC = 0.001139 (mm) IMC = 0.001330 (mm) IMC = 0.001521 (mm)

Crack Within IMC

圖4-15 裂縫位於介金屬化合物層中間處之裂縫長度對能量釋放率關 係圖

0.0006 0.0008 0.001 0.0012 0.0014 0.0016

IMC Thickness (mm)

0 2 4 6 8 10

S tr ess I n ten s it y F a c to r ; K

I

(M P a -m m

/21

)

Crack = 0.04 (mm) Crack = 0.08 (mm) Crack = 0.12 (mm) Crack = 0.16 (mm) Crack = 0.20 (mm)

Crack Within IMC

圖4-16 裂縫位於介金屬化合物層中間處之介金屬化合物厚度對應力 強度因子KI關係圖

0.0006 0.0008 0.001 0.0012 0.0014 0.0016

IMC Thickness (mm)

0 2 4 6 8 10

S tr e ss I n te n s it y F acto r ; K

II

(M Pa -m m

/21

)

Crack = 0.04 (mm) Crack = 0.08 (mm) Crack = 0.12 (mm) Crack = 0.16 (mm) Crack = 0.20 (mm)

Crack Within IMC

圖4-17 裂縫位於介金屬化合物層中間處之介金屬化合物厚度對應力 強度因子KII關係圖

0.0006 0.0008 0.001 0.0012 0.0014 0.0016

IMC Thickness (mm)

0 10 20 30 40 50 60 70 80 90

Ph ase A n g le ; de g re e )

Crack = 0.04 (mm) Crack = 0.08 (mm) Crack = 0.12 (mm) Crack = 0.16 (mm) Crack = 0.20 (mm)

Crack Within IMC

圖4-18 裂縫位於介金屬化合物層中間處之介金屬化合物厚度對相位 角關係圖

在文檔中 中 華 大 學 (頁 46-94)

相關文件