• 沒有找到結果。

本實驗利用非共價的方式修改奈米碳管表面,利用非共價的方式具有不傷 害奈米碳管表面且製備上也來的容易許多。我們使用超分子修改奈米碳管 表面,此超分子為UPEO,UPEO的一端為尿嘧啶官能基,藉由非共價的方 式吸附在奈米碳管表面,而另一端為聚乙二醇,利用聚乙二醇親水的特性,

將表面被改質的奈米碳管順利的分散在去離子水中。利用熱重分析的流失 量、拉曼光譜的偏移、穿透式電子顯微鏡證實奈米碳管的表面成功地被

UPEO修改。

被修改的奈米碳管在30℃~100℃的溫度範圍下一小時,皆保持良好的穩定 度;此修改的奈米碳管不僅可以分散在水中,也可以分散在一些有機溶劑,

如:二甲基甲醯胺、二氯甲烷、氯仿等等;利用UPEO修改奈米碳管還擁有

PH回應的特性,具PH感測之應用潛力。將分散的奈米碳管導入聚甲基丙烯 酸甲酯中,所得的複材在熱性質上有提升的效果。

此外,我們將本實驗室所聚合的高分子,聚苯乙醯尿嘧啶(PVBU)來分散碳 管,在拉曼光譜中也可以證實,PVBU與奈米碳管具有作用力,成功修改奈 米碳管表面,改質的奈米碳管可以增加電極的電荷轉化。尿嘧啶和汞金屬 有專一性,在掃描式電子顯微鏡中,可以看出汞金屬與其他金屬在改質的 奈米碳管上的形貌有所不同。

75

參考文獻

1. Iijima, S., Helical microtubules of graphitic carbon. nature, 1991. 354(6348): p. 56-58.

2. 陳文章, et al., 功能性奈米材料及其應用. 真空科技, 2006. 19(1): p. 4-16.

3. 林江珍 and 林嵩祚, 奈米碳管之有機分散性改質及應用. 石油季刊, 2005. 41(3):

p. 47-59.

4. 洪昭南, 徐逸明, and 王宏達, 奈米碳管結構及特性簡介. 化工, 2002. 49(1): p.

23-32.

5. Hirsch, A. and O. Vostrowsky, Functionalization of carbon nanotubes. Functional molecular nanostructures, 2005: p. 193-237.

6. Terrones, M., et al., Nanotubes: a revolution in materials science and electronics.

Fullerenes and Related Structures, 1999: p. 189-234.

7. Treacy, M., T. Ebbesen, and J. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes. 1996.

8. Saito, Y. and S. Uemura, Field emission from carbon nanotubes and its application to electron sources. Carbon, 2000. 38(2): p. 169-182.

9. Jose‐Yacaman, M., et al., Catalytic growth of carbon microtubules with fullerene structure. Applied physics letters, 1993. 62(2): p. 202-204.

10. Guo, T., et al., Catalytic growth of single-walled manotubes by laser vaporization.

Chemical Physics Letters, 1995. 243(1-2): p. 49-54.

11. Dresselhaus, M.S., G. Dresselhaus, and P. Eklund, Science of fullerenes and carbon nanotubes1996: Academic Pr.

12. Wildoer, J.W.G., et al., Electronic structure of atomically resolved carbon nanotubes.

nature, 1998. 391(6662): p. 59-62.

13. Dekker, C., Carbon nanotubes as molecular quantum wires. Physics Today, 1999. 52:

p. 22-30.

76

14. Dai, H., Carbon nanotubes: synthesis, integration, and properties. Accounts of chemical research, 2002. 35(12): p. 1035-1044.

15. Dinadayalane, T., et al., Cumulative π‐π interaction triggers unusually high stabilization of linear hydrocarbons inside the single‐walled carbon nanotube.

International Journal of Quantum Chemistry, 2007. 107(12): p. 2204-2210.

16. Liu, J., et al., Fullerene pipes. Science, 1998. 280(5367): p. 1253-1256.

17. Kuznetsova, A., et al., Enhancement of adsorption inside of single-walled nanotubes:

opening the entry ports. Chemical Physics Letters, 2000. 321(3): p. 292-296.

18. Chen, J., et al., Solution properties of single-walled carbon nanotubes. Science, 1998.

282(5386): p. 95-98.

19. Tung, T.T., et al., Conducting Nanocomposites Derived from Poly

(styrenesulfonate)-Functionalized MWCNT-PSS and PEDOT. Journal of the Electrochemical Society, 2009. 156: p. K218.

20. Bao, Z. and A.J. Lovinger, Soluble regioregular polythiophene derivatives as semiconducting materials for field-effect transistors. Chemistry of materials, 1999.

11(9): p. 2607-2612.

21. Coakley, K.M., et al., Infiltrating Semiconducting Polymers into Self‐assembled Mesoporous Titania Films for Photovoltaic Applications. Advanced Functional Materials, 2003. 13(4): p. 301-306.

22. Bao, Z., A. Dodabalapur, and A.J. Lovinger, Soluble and processable regioregular poly (3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility. Applied physics letters, 1996. 69: p. 4108.

23. Schwartz, B.J., Conjugated polymers as molecular materials: How chain conformation and film morphology influence energy transfer and interchain interactions. Annual review of physical chemistry, 2003. 54(1): p. 141-172.

24. Ajayan, P., Nanotubes from Carbon. Chemical Reviews, 1999. 99(7): p. 1787.

77

25. Baughman, R.H., A.A. Zakhidov, and W.A. De Heer, Carbon nanotubes--the route toward applications. Science, 2002. 297(5582): p. 787-792.

26. Geng, J. and T. Zeng, Influence of single-walled carbon nanotubes induced

crystallinity enhancement and morphology change on polymer photovoltaic devices.

Journal of the American Chemical Society, 2006. 128(51): p. 16827-16833.

27. Pradhan, B., S.K. Batabyal, and A.J. Pal, Electrical bistability and memory phenomenon in carbon nanotube-conjugated polymer matrixes. The Journal of Physical Chemistry B, 2006. 110(16): p. 8274-8277.

28. Kuila, B.K., K. Park, and L. Dai, Soluble P3HT-Grafted Carbon Nanotubes: Synthesis and Photovoltaic Application. Macromolecules, 2010.

29. Singh, P., et al., Carbon Nanotube–Nucleobase Hybrids: Nanorings from Uracil‐

Modified Single‐Walled Carbon Nanotubes. Chemistry-A European Journal, 2011.

17(24): p. 6772-6780.

30. Sinden, R.R., DNA structure and function1994: Academic Pr.

31. Kim, W.Y., Y.C. Choi, and K.S. Kim, Understanding structures and

electronic/spintronic properties of single molecules, nanowires, nanotubes, and nanoribbons towards the design of nanodevices. J. Mater. Chem., 2008. 18(38): p.

4510-4521.

32. Shalek, A.K., et al., Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proceedings of the National Academy of Sciences, 2010. 107(5): p. 1870-1875.

33. Beaux, M.F., D.N. McIlroy, and K.E. Gustin, Utilization of solid nanomaterials for drug delivery. 2008.

34. Morishita, T., et al., Noncovalent functionalization of carbon nanotubes with

maleimide polymers applicable to high-melting polymer-based composites. Carbon, 2010. 48(8): p. 2308-2316.

78

35. Cai, D. and M. Song, Latex technology as a simple route to improve the thermal conductivity of a carbon nanotube/polymer composite. Carbon, 2008. 46(15): p.

2107-2112.

36. Zou, J., et al., A general strategy to disperse and functionalize carbon nanotubes using conjugated block copolymers. Advanced Functional Materials, 2009. 19(3): p.

479-483.

37. Zhao, Y.L. and J.F. Stoddart, Noncovalent functionalization of single-walled carbon nanotubes. Accounts of chemical research, 2009. 42(8): p. 1161-1171.

38. Chen, R.J., et al., Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. JOURNAL-AMERICAN CHEMICAL SOCIETY, 2001. 123(16): p. 3838-3839.

39. Nakashima, N., Y. Tomonari, and H. Murakami, Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying

ammonium ion. Chemistry Letters, 2002. 31(6): p. 638-639.

40. Chen, J., et al., Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. Journal of the American Chemical Society, 2002.

124(31): p. 9034-9035.

41. Tuncel, D., Non-covalent interactions between carbon nanotubes and conjugated polymers. Nanoscale, 2011. 3(9): p. 3545-3554.

42. Geng, H.Z., et al., Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. Journal of the American Chemical Society, 2007.

129(25): p. 7758-7759.

43. Dan, B., G.C. Irvin, and M. Pasquali, Continuous and scalable fabrication of transparent conducting carbon nanotube films. ACS nano, 2009. 3(4): p. 835-843.

44. Doherty, E.M., et al., The spatial uniformity and electromechanical stability of transparent, conductive films of single walled nanotubes. Carbon, 2009. 47(10): p.

79

2466-2473.

45. Pei, S., et al., The fabrication of a carbon nanotube transparent conductive film by electrophoretic deposition and hot-pressing transfer. Nanotechnology, 2009. 20: p.

235707.

46. Jo, J.W., et al., Fabrication of Highly Conductive and Transparent Thin Films from Single-Walled Carbon Nanotubes Using a New Non-ionic Surfactant via Spin Coating.

ACS nano, 2010.

47. Dalton, A., et al., Selective interaction of a semiconjugated organic polymer with single-wall nanotubes. The Journal of Physical Chemistry B, 2000. 104(43): p.

10012-10016.

48. Goh, R.G.S., et al., Effects of substrate curvature on the adsorption of poly

(3-hexylthiophene) on single-walled carbon nanotubes. Applied physics letters, 2006.

88(5): p. 053101-053101-3.

49. Rice, N.A., et al., Dispersing as-prepared single-walled carbon nanotube powders with linear conjugated polymers. Chemical communications, 2006(47): p. 4937-4939.

50. Shvartzman-Cohen, R., et al., Generic approach for dispersing single-walled carbon nanotubes: the strength of a weak interaction. Langmuir, 2004. 20(15): p. 6085-6088.

51. Shin, H., et al., Amphiphilic block copolymer micelles: new dispersant for single wall carbon nanotubes. Macromolecular rapid communications, 2005. 26(18): p.

1451-1457.

52. Zou, J., et al., Dispersion of pristine carbon nanotubes using conjugated block copolymers. Advanced Materials, 2008. 20(11): p. 2055-2060.

53. Pan, D., J.L. Turner, and K.L. Wooley, Shell cross-linked nanoparticles designed to target angiogenic blood vessels via αvβ3 receptor-ligand interactions. Macromolecules, 2004. 37(19): p. 7109-7115.

54. Liu, Z., et al., Circulation and long-term fate of functionalized, biocompatible

80

single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proceedings of the National Academy of Sciences, 2008. 105(5): p. 1410.

55. Singh, R., et al., Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(9): p. 3357-3362.

56. Kostarelos, K., et al., Cellular uptake of functionalized carbon nanotubes is

independent of functional group and cell type. Nature nanotechnology, 2007. 2(2): p.

108-113.

57. Chen, J., et al., Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. Journal of the American Chemical Society, 2008. 130(49): p. 16778-16785.

58. Zhang, X., et al., Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials, 2009. 30(30): p.

6041-6047.

59. Wilson, A.J., Non-covalent polymer assembly using arrays of hydrogen-bonds. Soft Matter, 2007. 3(4): p. 409-425.

60. Iwaura, R., et al., Molecular-level helical stack of a nucleotide-appended oligo (p-phenylenevinylene) directed by supramolecular self-assembly with a

complementary oligonucleotide as a template. Journal of the American Chemical Society, 2006. 128(40): p. 13298-13304.

61. Zimmerman, S. and P. Corbin, Heteroaromatic modules for self-assembly using multiple hydrogen bonds. Molecular Self-Assembly Organic Versus Inorganic Approaches, 2000: p. 63-94.

62. Goshe, A.J., et al., Supramolecular Chemistry And Self-assembly Special Feature:

Supramolecular recognition: On the kinetic lability of thermodynamically stable host–guest association complexes. Proceedings of the National Academy of Sciences

81

of the United States of America, 2002. 99(8): p. 4823.

63. Clinton, R., C. Burd, and M. Weck, Modular and dynamic functionalization of polymeric scaffolds. Accounts of chemical research, 2007. 40(1): p. 63-74.

64. Merkoçi, A., Carbon nanotubes in analytical sciences. Microchimica Acta, 2006.

152(3): p. 157-174.

65. Yuan, W.Z., et al., Electronic interactions and polymer effect in the functionalization and solvation of carbon nanotubes by pyrene-and ferrocene-containing poly (1-alkyne) s. Macromolecules, 2008. 41(3): p. 701-707.

66. Wang, Y.S., et al., Bioinspired Photo-Cross-Linked Nanofibers from Uracil-Functionalized Polymers. ACS Macro Letters, 2011. 1: p. 159-162.

67. Chen, G.X. and H. Shimizu, Multiwalled carbon nanotubes grafted with polyhedral oligomeric silsesquioxane and its dispersion in poly (l-lactide) matrix. Polymer, 2008.

49(4): p. 943-951.

68. Kim, K.T. and W.H. Jo, Noncovalent functionalization of multiwalled carbon

nanotubes using graft copolymer with naphthalene and its application as a reinforcing filler for poly (styrene‐co‐acrylonitrile). Journal of Polymer Science Part A: Polymer Chemistry, 2010. 48(19): p. 4184-4191.

69. Shen, Q. and X. Wang, Simultaneous determination of adenine, guanine and thymine based on [beta]-cyclodextrin/MWNTs modified electrode. Journal of Electroanalytical Chemistry, 2009. 632(1-2): p. 149-153.

70. Liu, X., et al., Specific mercury (II) adsorption by thymine-based sorbent. Talanta, 2009. 78(1): p. 253-258.

71. Leghrib, R., et al., Room-temperature, selective detection of benzene at trace levels using plasma-treated metal-decorated multiwalled carbon nanotubes. Carbon, 2010.

48(12): p. 3477-3484.

82

相關文件