• 沒有找到結果。

本論文的第一部份利用理論和實作完成了低溫共燒陶瓷低通及帶通濾波器,低 通濾波器設計的中心頻率是在 2.4GHz,通帶內的最大的輸入損耗約為 0.6dB,傳輸 零點在 4.5GHz 處,衰減量約-39dB,帶通濾波器設計的中心頻率是在 2.4GHz,通 帶內的最大的輸入損耗約為 2dB,量測傳輸零點在 2.07GHz 處,衰減量約-39dB,

倍頻 4.8GHz 的衰減量有 41dB。

本論文的第二部份則是將第一部份和切換開關及功率放大器整合,實現了三個 射頻系統封裝模組的設計,模組一包含了兩個切換開關和一個帶通濾波器,模組二 則比模組一更多了一個低通濾波器,模組三則是比模組一多包含了一個功率放大 器 , 前 兩 個 模 組 的 體 積 都 只 有 3000*3000*1300um , 模 組 三 的 體 積 也 只 有 5400*4000*2000um。模組一設計的中心頻率在 2.45GHz,頻寬約 500MHz,通帶內 的損耗約 3.5dB,傳輸零點設計於 1.8GHz 處,衰減量約為 45dB,在倍頻 4.8GHz 處,衰減量約為 55dB,模組二設計的中心頻率一樣是在 2.45GHz,接收端的通帶內 損耗約 3.6dB,通帶外的有兩個傳輸零點,分別是 1.2GHz 和 1.95GHz,衰減量分別 為 41dB 和 70dB,在倍頻 4.8GHz 處,衰減量為 28dB,發射端的通帶內損耗約 1.8dB,

傳輸零點在 4.6GHz 處,衰減量約為 40dB。模組三帶通濾波器和功率放大器內埋匹 配電路的部份,也都有得到驗證,模組內濾波器量測通帶內的輸入損耗約為 1.3dB,

傳輸零點在 1.6GHz,衰減量約 47dB,倍頻 4.8GHz 處的衰減量為 40dB。但因為功 率放大器的祼晶功能失效,而無法進行整個模組的驗證。

綜合上述的模組和元件設計,可知實作和模擬相近,但輸入損耗較大,建議以 後製作模組時,應該先將祼晶利用打線和 LTCC 連結,再焊上印刷電路板,以減少 因為打線和上錫膏對側面電極的影響,並且表面電路要鍍金,方便裸晶的打線。內 部電路的佈線方式也是可以思考改進的地方,如何減少電感寄生電容的產生,及有 效的利用面積,以及如何使模擬和實作更加的吻合。

本論文的第三部份提出兩種新型雙頻縮小化印刷天線的設計,利用傳統印刷倒 F 型天線本身容易達到阻抗匹配及全向性場型的特性,改變其天線形狀為螺旋形繞 線及使用耦合饋入的方式來達到雙頻及縮小化。實作的結果也顯示了此兩種結構可

以輕易設計在吾人所需要的頻段,比起傳統的印刷倒 F 型天線也可以縮小約 70%及 47%,且場型也具有全向性場型的特性。螺旋性結構也利用低溫共燒陶瓷技術來進 行實現,利用低溫共燒陶瓷三維的特性,可以有效的彌補在水平於電路板切面的垂 直輻射場,提供天線設計上更多的選擇性。

參考文獻

[1] S. Chakraborty, K. Lim, A. Sutono, E. Chen, S. Yoo, A. Obatoyinbo, S.-W. Yoon, M.

Maeng, M.F. Davis, S. Pinel, J. Laskar “A 2.4-GHz radio front end in RF system-on-package technology” Microwave Magazine, IEEE, Volume: 3 , Issue: 2 , June 2002 , Pages:94 – 104

[2] C. Q. Scrantom and J. C. Lawson ” LTCC technology: where we are and where we're going. II” Technologies for Wireless Applications, 1999. Digest. 1999 IEEE MTT-S Symposium on , 21-24 Feb. 1999, Pages:193 – 200

[3] C.H. Lee, A. Sutono, S. Han, K. Lim, S. Pinel, E. M. Tentzeris, and Joy Laskar,“A compact LTCC-based Ku-band transmitter module”Advanced Packaging, IEEE Transactions on [see also Components, Packaging and Manufacturing Technology, Part B:

Advanced Packaging, IEEE Transactions on] , Volume: 25 , Issue: 3 , Aug.

2002,Pages:374 – 384

[4] 方士庭 ”應用於高頻無線通訊之多層低溫共燒陶瓷(LTCC)的設計技術” 中華 民國陶業研究學會會刊 第二十一卷 第四期 52-58 頁

[5] D.M. Pozar, Microwave Engineering, John Wiley & Sons, New York, 1998, 2

nd

Ed.

[6] 陳南君 ”多層基板結構關鍵射頻元件設計” 國立交通大學電信工程研究所碩士 論文,2003

[7] A. Sutono, D. Heo, Y. E. Chen, and J. Laskar, “High-Q LTCC-Based Passive Library for Wireless System-on-Package (SOP) Module Development” Microwave Theory and Techniques, IEEE Transactions on , Volume: 49 , Issue: 10 , Oct. 2001

Pages:1715 - 1724

[8] J. S. hong and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters” Microwave theory and Techniques, IEEE Transactions on , Volume: 44 , Nov 1996 , Page: 2099-2109

[9] J. S. Hong and M. J. Lancaster, “Microstrip corss-coupled trisection bandpass filters with asymmetric frequency characteristics” Microwaves, Antennas and Propagation, IEE Proceedings - , Volume: 146 , Issue: 1 , Feb. 1999

Pages:84 - 90

[10] G.. L. Matthaei, L. Young and E. M. T. Jones “Microwave Filters Impedance

Matching Networks and Coupling Structures” New York: McGraw-Hill, 1980, pp.

355-410

[11] J. S. Hong, M. J. Lancaster, “Microstrip Filters for RF/Microwave Application”

Microwave Magazine, IEEE , Volume: 3 , Issue: 3 , Sept. 2002 , Pages:62 – 65

[12] G. Zheng, S. Pinel, K. Lim, R. Li, M. Tentzeris, J. Papapolymerou, J. Laskar, B.

Lenoir, P. Blondy, D. Baillargeat, and P. Guillon,” Design of compact RF components for low-cost high-performance wireless front-ends” Microwave and Millimeter Wave Technology, 2002. Proceedings. ICMMT 2002. 2002 3rd International Conference on , 17-19 Aug. 2002 , Pages:259 – 262

[13] S. Pinel, S. Chakraborty, M. Roellig, R. Kunze, S. Mandal, H. Liang, C. H. Lee, R.

Li, K. Lim, G. White, M. Tentzeris, and J. Laskar,” A highly integrated transceiver module for 5.8 GHz OFDM communication system using multi-layer packaging technology” Microwave Symposium Digest, 2001 IEEE MTT-S , International , Volume:

3 , 20-25 May 2001 , Pages:1739 - 1742 vol.3

[14] L. K. Yeung, and Ke-Li Wu “A compact second-order LTCC bandpass filter with two finite transmission zeros” Microwave Theory and Techniques, IEEE Transactions on , Volume: 51 , Issue: 2 , Feb. 2003 , Pages:337 - 341

[15] W. –Y. Leung, K. -K M. Cheng, and Ke-Li Wu, “Multilayer LTCC bandpass filter design with enhanced stopband characteristics” Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters] , Volume: 12 , Issue:

7 , July 2002 ,Pages:240 - 242

[16] V. Piatnitsa, E. Jakku, and S. Leppaevuori “Design of a 2-pole LTCC filter for wireless communications” Wireless Communications, IEEE Transactions on , Volume:

3 , Issue: 2 , March 2004 , Pages:379 - 381

[17] S. A. Raby, and A.C. Cangellaris “Interconnect properties and multilayer bandpass filter design in LTCC substrates” Wireless Communications Conference, 1997., Proceedings , 11-13 Aug. 1997 , Pages:187 – 192

[18]Constantine A. Balanis, “Antenna Theory Analysis and Design”, John Wiley & Sons, INC. 1982

[19] C. Soras, M. Karaboikis, G. Tsachtsiris, V. Makios, “Analysis and design of an inverted-F antenna printed on a PCMCIA card for the 2.4 GHz ISM band” Antennas and

Propagation Magazine, IEEE , Volume: 44 , Issue: 1 , Feb. 2002 , Pages:37 - 44

[20] R. Kronberger, L. Reiter, and J. Hopf, “Multiband planar inverted-F car antenna for mobile phone and GPS” IEEE Trans: Veh: Technol, vol46, pp.2714-2717, December 1999.

[21] S.K. Plait and A. Hamadi, “Design and Development of Wideband and dual-band microstrip antennas” IEE Proc.-Microw Antennas Propag., Vol.146, pp.35-39,February 1999

[22] B Kevin, “Radiating and balanced mode analysis of PIFA shorting pins” Antennas and Propagation Society International Symposium, 2002. IEEE , Volume: 4 , 16-21 June 2002 Pages:508 - 511 vol.4

[23] Y. L. Kuo, Y. T. Cheng, K. L. Wong, ” Printed inverted-F antennas for applications in wireless communication” Antennas and Propagation Society International Symposium, 2002. IEEE , Volume: 3 , 16-21 June 2002 Pages:454 - 457

相關文件