• 沒有找到結果。

據文獻,當 LED 磊晶在 HEMT 結構上有晶格不匹配的情形發生,

而 HEMT 磊晶於 LED 則有磊晶溫度之顧慮,故本實驗已提出一種以 簡單標準化黃光、蝕刻方式,將薄層 n-GaN 製作成其通道層使用,

並使用其穩定的調控發光功率以及調頻高頻訊號。在調頻高頻訊號的 同時,發現一但只要超過 f=100KHz 以上就會發現失真的情形,研判 為因載子積聚在金半接面,由於開關切換速率過快,導致積聚的載子 無法瞬間排出,才會有失真的情形發生。上述實驗結果得知,我們已 實現了將 MOSFET 與 LED 製作在同一磊晶平面上,而省去了 HEMT 結構磊晶之複雜性,所以對於往後光電積體電路製作,將是一個較為 新穎的製程方式。

隨著 IC 中可置入的電晶體不斷增加,使得在製造 IC 時需考慮兩 大因素,一為熱串擾、頻寬限制等因素,這些問題會造成資料傳輸的 延遲現象,不過將光電元件以高頻模式操作可以得到改善,二為元件 尺寸的增加,其可藉由 CMOS 製程技術來改善,因此將電子元件與 光電元件以 CMOS 製程技術整合於同一平台上將是一個趨勢。一般 常用的矽,是一種非直接能隙材料,電子與電洞須有額外的能量來復 合,而這些能量造成的功率逸散限制了光電元件的發光效率,因此目 前採用直接能隙材料來改善此一缺點,例如 GaN、GaAs、InP 等等,

52

其中 GaN 應用於藍光 LED 發光效率遠超過矽材料,因此也具有其相 對優勢。電路欲操作在閘極偏壓 120V 時,需考慮到汲極電壓也要相 對的提高(高偏壓下易使電路燒毀),才會使其進入飽和區操作,飽和 區操作的好處是其導通電阻值較小,故其電流值不受 VDS偏壓大小所 影響。

未來 OEIC 將由目前較單純的 LED 結合驅動 IC 或 PD 結合 TIA

(Transimpendce Amplifier)朝更複雜及多樣元件的整合發展。例如 在光接收端,Detector 除了結合 TIA 外,再進一步結合後置放大器

(post-amplifier)、多工器(demultiplexer)等電子元件。另外,亦 可在同一基板上整合多波長 LD 陣列、驅動 IC 及電子式調變器

(modulator)等電子元件、光調變器和 WDM 濾波器(filter)等光被 動元件的 OEIC 產品,均可應用於 DWDM(Dense Wavelength Division Multiplexing)網路系統上,使其資料間的傳輸更為快速。

53

參考文獻

[1]

J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen and K. K.

Shih ,” Low-resistance ohmic contacts to p-type GaN”,Appl. Phys. Lett.

Vol. 74 (1999) p.p. 1275-1277

[2]

Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, S. C. Chang, S.C.

Shei, C. W. Kuo and S. C. Chen, “InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts”, Solid State Electron., Vol. 47, No. 5, pp. 849- 853, May 2003.

[3]

C. H. Kuo, S. J Chang, Y. K. Su, R. W. Chuang, C. S. ChangL.

W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo and J. M. Tsai, “Ni-tride-based near-ultraviolet LEDs with an ITO transparent contact,” Ma-terials Science and Engineering B vol. 106, pp. 69, 2004.

[4]

C. S. Chang, S. J. Chang, Y. K. Su, Y. Z. Chiou, Y. C. Lin, Y. P.

Hus,S. C. Shei, J. C. Ke, H. M. Lo, S. C. Chen and C. H. Liu,

“InGaN/GaN light emitting diodes with rapid thermal annealed Ni/ITO p-contacts”, Jpn. J. Appl. Phys. Part 1, Vol. 42, No. 6A. pp.3324–3327 (2003) (SCI)

[5]

R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,”

Appl. Phys. Lett., vol. 79, pp. 2925-2927, 2001.

[6]

Z. Li, J.Waldron, T. Detchprohm, et al., “Monolithic integration of lightemitting diodes and power metal-oxide-semiconductor channel highelectron-mobility transistors for light-emitting power integrated cir-cuits in GaN on sapphire substrate,” Appl. Phys. Lett., vol. 102, no. 19,p.

192107, 2013.

[7]

Zhaojun Liu, Jun Ma, Tongde Huang, Chao Liu, and Kei May Lau”Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors” Appl Phys Lett 104, 091103 (2014)

[8]

反 應 性 射 頻 磁 控 濺 鍍 , 光 電 工 程 系 , 專 題 報 告 , 鄭 錫 恩 http://eshare.stust.edu.tw/View/2665

[9]

Michael Quirk, Julian Serda "Semiconductor Manufacturing Tech-nology" p.443, p.450~451

[10]

氮化鎵異質結構場效電晶體之研究, 國立交通大學(電子研究

所),陳力輔

[11]

R. G. Hunsperger, Integrated Optics, Theory and Technolo-gy(Berlin: Springer, 1995).

[12]

I. Polentier, L. Buydens, A. Ackaert, P. Demeester, P. van Daele,F.Depestel, D. Lootens, and R. Baets, “ Monolithic integration of

54

an InGaAs/GaAs/AlGaAs strained layer SQW LED and GaAs MESFET using epitaxial lift-off,” Electron. Lett. 26(13), 925 (1990).

[13]

M. E. Groenert, C. W. Leitz, A. J. Pitera, V Yang, H. Lee, R. J.

Ramand E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362 -367 (2003).

[14]

J. -W. Shi, H.-Y. Huang, J.-K. Sheu, S.-H. Hsieh, Y.-S. Wu, Ja-Yu Lu, F.-H. Huang, and W.-C. Lai, “Nitride-based photodiode at 510-nm wavelength for plastic optical fiber communication,” IEEE Pho-ton.Technol. Lett. 18(1), 283-285 (2006).

[15]

K. Chilukuri, M. J. Mori, C. L. Dohrman and E. A. Fitzger-ald,“Monolithic CMOS-compatible AlGaInP visible LED arrays on sili-con on lattice-engineered substrates (SOLES),” Semisili-cond. Sci. Tech-nol.22(2), 29-34 (2007).

[16]

Y. J. Lee, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang,“ Di-chromatic InGaN-based white light emitting diodes by using laser lift-off and wafer-bonding schemes,” Appl. Phys. Lett. 90(16), 161115(2007).

[17]

Z. J. Liu, K. M. Wong, C. W. Keung, C. W. Tang, and K. M.

Lau,“Monolithic LED microdisplay on active matrix substrate using flip-chip technology,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1298-1302(2009).

[18]

H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M.

Couillard,G. A. Botton, and Z. Mi, “p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111),” Nano Lett. 11(5), 1919-1924 (2011).

[19]

F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, and N.

T.Pelekanos, “Monolithic integration of nitride-based transistor with Light Emitting Diode for sensing applications,” Microelectron. Eng. 90, 33-36(2012).

[20]

J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P.

Green,E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visi-ble-Light communications using a CMOS-controlled micro-light- emit-ting-diode array,” J. Lightwave Technol. 30(1), 61-67 (2012).

[21]

E. Fred Schubert, and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274-1278 (2005).

[22]

K. Hazu and S. F. Chichibu, “Optical polarization properties of m-plane AlxGa1-xN epitaxial films grown on m-plane freestanding GaN substrates toward nonpolar ultraviolet LEDs,” Opt. Express 19(S4),A1008–A1021 (2011).

55

[23]

Y. J. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “High-light-extraction GaN-based vertical LEDs with double diffuse surfac-es,”IEEE J. Quantum Electron. 42(12), 1196-1201 (2006).

[24]

T. Wei, Q. Kong, J. Wang, J. Li, Y. Zeng, G.Wang, J. Li, Y. Liao, and F. Yi, “Improving light extraction of InGaN-based light emitting di-odes with a roughened p-GaN surface using CsCl nano-islands,”

Opt.Express 19(2), 1065–1071 (2011).

[25]

C. Y. Huang, Y. C. Yao, Y. J. Lee, T. Y. Lin, W. J. Kao, J.

S.Hwang,Y. J. Yang and J. L. Shen, “Local nanotip arrays sculptured byatomic force microscopy to enhance the light- output efficiency of-GaN-based light-emitting diode structures,” Nanotechnology 25(19),195401 (2014).

56

相關文件