• 沒有找到結果。

本實驗使用 MAD, Player Load, MPD 三種演算法只能將加速度值轉換為運動強度 值、量化單位時間內運動強度的方法,並無法做動作辨識的功能,若要做動作辨識可 能還需要其他儀器例如:攝影機…等,因此假如有兩位受詴者在相同時間內做出跳殺三 次與放小球十次的 MAD 值結果相同,我們無法只從 MAD 值結果分辨出誰做跳殺誰 做小球,只能說兩位在相同時間下運動強度相同,若撇除動作不同造成影響的部分,

實驗結果得知,以心率 TRIMP 值為運動強度之效標,將加速規訊號以 MAD, Player Load 與 MPD 演算法推估動作運動量是可行的,並且建議加速規擺放位置除了慣用手 外其餘部位皆可,希望此結果可提供為未來量化運動訓練之基礎。而本結果是否也能 比照至其他持拍運動項目上還需做探討,例如網球可能會因為網球拍的重量比羽球拍 重的多,球拍與球撞擊產生的加速度變化也比較大,或是因為場地不同移動步伐不同 而產生不同的加速度值這些都還需要做更深入的研究才能得知。對未來研究建議,可 再多增加羽球訓練動作以利增加各種情況之樣本,並可將本研究應用於羽球選手量化 運動量上。另外本實驗為了要讓心率達到應有的強度值,將實驗過程持續 3 分鐘,因 此在實驗開始前,要求受詴者設定的頻率是要能夠撐完 3 分鐘的頻率,減少他們在中 高強度時有疲勞的情況發生,就算真的疲勞產生,也不至於讓加速度值瞬間大幅度下 降,或許日後能利用這三種演算法,針對動作疲勞對加速度的影響作評估探討。

引用文獻

王佩凡 (2008) 。桌球正手擊球能量消耗分析—三軸加速規與氣體分析儀之比較 (碩士 論文) 。國立台灣體育大學,桃園市。

范姜嘉銘 (2014) 。不同運動項目大專男性選手之身體組成差異 (碩士論文) 。國立台 北護理健康大學,台北市。

陳嘉偉 (2012) 。甲乙組桌球選手競賽狀況能量消耗之比較研究 (學位論文) 。國立臺 灣師範大學,台北市。

彭美麗 (2007) 。羽毛球技巧圖解。北京::北京體育大學出版社

楊繼美 (2004) 。我國優秀青少年羽球選手運動傷害之調查研究。教練科學,4,71-83。

劉于詮 (2011) 。我國青少年羽球選手運動傷害調查分析-以 2008 年台灣省羽球協會會 長暨 Wilson (k) FACTOR 盃全國青少年羽球錦標賽為例。屏東教大體育,14,

384-397。

Achten, J., & Jeukendrup, A. E. (2003). Heart rate monitoring. Sports Medicine, 33(7), 517-538.

Avalos, M., Hellard, P., & Chatard, J.-C. (2003). Modeling the training-performance relationship using a mixed model in elite swimmers. Medicine and Science in Sports

and Exercise, 35(5), 838-846.

Balke, B. (1960). The effect of physical exercise on the metabolic potential, a crucial measure of physical fitness. Chapter in: Exercise and Fitness, The Athletic Institute,

Illinois.

Banister, E., Calvert, T., Savage, M., & Bach, T. (1975). A systems model of training for athletic performance. Aust J Sports Med, 7(3), 57-61.

Borresen, J., & Lambert, M. I. (2009). The quantification of training load, the training response and the effect on performance. Sports Medicine, 39(9), 779-795.

Boyd, L. J., Ball, K., & Aughey, R. J. (2011). The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. Int J Sports Physiol Perform,

6(3), 311-321.

Boyd, L. J., Ball, K., & Aughey, R. J. (2013). Quantifying external load in Australian football matches and training using accelerometers. Int J Sports Physiol Perform, 8(1), 44-51.

Busso, T., Denis, C., Bonnefoy, R., Geyssant, A., & Lacour, J.-R. (1997). Modeling of adaptations to physical training by using a recursive least squares algorithm. Journal of

Applied Physiology, 82(5), 1685-1693.

Casamichana, D., Castellano, J., Calleja-Gonzalez, J., San Román, J., & Castagna, C.

(2013). Relationship between indicators of training load in soccer players. The Journal

of Strength & Conditioning Research, 27(2), 369-374.

Casamichana, D., Castellano, J., & Dellal, A. (2013). Influence of different training regimes on physical and physiological demands during small-sided soccer games: continuous vs. intermittent format. The Journal of Strength & Conditioning Research, 27(3), 690-697.

Castellano, J., Casamichana, D., & Dellal, A. (2013). Influence of game format and number of players on heart rate responses and physical demands in small-sided soccer games.

The Journal of Strength & Conditioning Research, 27(5), 1295-1303.

Cejuela Anta, R., & Esteve-Lanao, J. (2011). Training load quantification in triathlon.

Journal of Human Sport & Exercise, 6 (2),218-232. doi:10.4100/jhse.2011.62.03

Chacon-Mikahil, M., Forti, V., Catai, A., Szrajer, J., Golfetti, R., Martins, L., . . . Maciel, B.

(1998). Cardiorespiratory adaptations induced by aerobic training in middle-aged men:

the importance of a decrease in sympathetic stimulation for the contribution of

dynamic exercise tachycardia. Brazilian Journal of Medical and Biological Research,

31(5), 705-712.

Chen, K. Y., & Bassett, D. R. (2005). The technology of accelerometry-based activity monitors: current and future. Medicine and Science in Sports and Exercise, 37(11), S490.

Corder, K., Ekelund, U., Steele, R. M., Wareham, N. J., & Brage, S. (2008). Assessment of physical activity in youth. Journal of Applied Physiology, 105(3), 977-987.

Crouter, S. E., Churilla, J. R., & Bassett Jr, D. R. (2006). Estimating energy expenditure using accelerometers. European Journal of Applied Physiology, 98(6), 601-612.

Dalen, T., Jørgen, I., Gertjan, E., Havard, H. G., & Ulrik, W. (2016). Player load,

acceleration, and deceleration during forty-five competitive matches of elite soccer.

The Journal of Strength & Conditioning Research, 30(2), 351-359.

Dicarlo, S. E., & Bishop, V. S. (2001). Central baroreflex resetting as a means of increasing and decreasing sympathetic outflow and arterial pressure. Annals of the New York

Academy of Sciences, 940(1), 324-337.

Eston, R. G., Rowlands, A. V., & Ingledew, D. K. (1998). Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children’s activities. Journal of

Applied Physiology, 84(1), 362-371.

Foster, C., Florhaug, J. A., Franklin, J., Gottschall, L., Hrovatin, L. A., Parker, S., . . . Dodge, C. (2001). A new approach to monitoring exercise training. The Journal of Strength &

Conditioning Research, 15(1), 109-115.

Friedman, D., Jensen, F., Mitchell, J., & Secher, N. (1990). Heart rate and arterial blood pressure at the onset of static exercise in man with complete neural blockade. The

Journal of physiology, 423(1), 543-550.

Gabbett, T., Jenkins, D., & Abernethy, B. (2010). Physical collisions and injury during professional rugby league skills training. Journal of Science and Medicine in Sport,

13(6), 578-583.

Gastin, P. B., McLean, O., Spittle, M., & Breed, R. V. (2013). Quantification of tackling demands in professional Australian football using integrated wearable athlete tracking technology. Journal of Science and Medicine in Sport, 16(6), 589-593.

Hachiya, T., Blaber, A., Aizawa, S., & Saito, M. (2008). Heart rate responses at onset of contraction. International Journal of Sports Medicine, 29(8), 646-651.

Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports

Medicine, 44(2), 139-147.

Hayes, P. R., & Quinn, M. D. (2009). A mathematical model for quantifying training.

European Journal of Applied Physiology, 106(6), 839-847.

Haymes, E. M., & Byrnes, W. C. (1993). Walking and running energy expenditure estimated by Caltrac and indirect calorimetry. Medicine and Science in Sports and Exercise,

25(12), 1365-1369.

Healy, G. N., Wijndaele, K., Dunstan, D. W., Shaw, J. E., Salmon, J., Zimmet, P. Z., &

Owen, N. (2008). Objectively measured sedentary time, physical activity, and

metabolic risk the Australian diabetes, obesity and lifestyle study (AusDiab). Diabetes

Care, 31(2), 369-371.

Hees, V. T., Lummel, R. C., & Westerterp, K. R. (2009). Estimating activity‐related energy expenditure under sedentary conditions using a tri‐axial seismic accelerometer. Obesity,

17(6), 1287-1292.

Jørgensen, U., & Winge, S. (1990). Injuries in badminton. Sports Medicine, 10(1), 59-64.

Karvonen, J., & Vuorimaa, T. (1988). Heart rate and exercise intensity during sports activities. Sports Medicine, 5(5), 303-311.

Kavanagh, J. J., & Menz, H. B. (2008). Accelerometry: a technique for quantifying movement patterns during walking. Gait & Posture, 28(1), 1-15.

Kozey, S. L., Lyden, K., Howe, C. A., Staudenmayer, J. W., & Freedson, P. S. (2010).

Accelerometer output and MET values of common physical activities. Medicine and

Science in Sports and Exercise, 42(9), 1776.

Lambert, M., Mbambo, Z., & Gibson, A. S. C. (1998). Heart rate during training and competition for longdistance running. Journal of Sports Sciences, 16(sup1), 85-90.

Lovell, T. W., Sirotic, A. C., Impellizzeri, F. M., & Coutts, A. J. (2013). Factors affecting perception of effort (session rating of perceived exertion) during rugby league training.

Int J Sports Physiol Perform, 8(1), 62-69.

Maciel, B., Gallo Jr, L., Marin, N. J., Lima, F. E., & Martins, L. (1986). Autonomic nervous

control of the heart rate during dynamic exercise in normal man. Clinical Science

(London, England: 1979), 71(4), 457-460.

Melanson Jr, E. L., Freedson, P. S., & Blair, S. (1996). Physical activity assessment: a review of methods. Critical Reviews in Food Science & Nutrition, 36(5), 385-396.

Miyamura, M., Ishida, K., Hashimoto, I., & Yuza, N. (1997). Ventilatory response at the onset of voluntary exercise and passive movement in endurance runners. European

Journal of Applied Physiology and Occupational Physiology, 76(3), 221-229.

Montoye, H. J., Kemper, H. C., Saris, W. H., & Washburn, R. A. (1996). Measuring Physical Activity and Energy Expenditure. Champaign, IL:Human Kinetics, 42-71.

Morton, R., Fitz-Clarke, J., & Banister, E. (1990). Modeling human performance in running.

Journal of Applied Physiology, 69(3), 1171-1177.

Mujika, I. (1998). The influence of training characteristics and tapering on the adaptation in highly trained individuals: a review. Int J Sports Med, 19(7), 439-446.

Mujika, I., Busso, T., Lacoste, L., Barale, F., Geyssant, A., & Chatard, J. C. (1996).

Modeled responses to training and taper in competitive swimmers. Med Sci Sports

Exerc, 28(2), 251-258.

O'Sullivan, S. E., & Bell, C. (2001). Training reduces autonomic cardiovascular responses to both exercise-dependent and-independent stimuli in humans. Autonomic

Neuroscience, 91(1), 76-84.

Owen, N., Healy, G. N., Matthews, C. E., & Dunstan, D. W. (2010). Too much sitting: the population-health science of sedentary behavior. Exercise and Sport Sciences Reviews,

38(3), 105.

Polglaze, T., Dawson, B., Hiscock, D. J., & Peeling, P. (2015). A comparative analysis of accelerometer and time--motion data in elite men's hockey training and competition.

International Journal of Sports Physiology & Performance, 10(4).

Robinson, D. M., Robinson, S. M., Hume, P. A., & Hopkins, W. G. (1991). Training intensity of elite male distance runners. Medicine and Science in Sports and Exercise,

23(9), 1078-1082.

Rothney, M. P., Schaefer, E. V., Neumann, M. M., Choi, L., & Chen, K. Y. (2008). Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3

accelerometers. Obesity, 16(8), 1946-1952.

Scanlan, A. T., Wen, N., Tucker, P. S., & Dalbo, V. J. (2014). The relationships between internal and external training load models during basketball training. The Journal of

Strength & Conditioning Research, 28(9), 2397-2405.

Scott, B. R., Lockie, R. G., Knight, T. J., Clark, A. C., & Janse de Jonge, X. (2013). A comparison of methods to quantify the in-season training load of professional soccer players. Int J Sports Physiol Perform, 8(2), 195-202.

Smith, D. J. (2003). A framework for understanding the training process leading to elite performance. Sports Medicine, 33(15), 1103-1126.

Stagno, K. M., Thatcher, R., & Van Someren, K. A. (2007). A modified TRIMP to quantify the in-season training load of team sport players. Journal of Sports Sciences, 25(6), 629-634.

Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153-156.

Trost, S. G., McIver, K. L., & Pate, R. R. (2005). Conducting accelerometer-based activity assessments in field-based research. Medicine and Science in Sports and Exercise,

37(11), S531.

Vähä-Ypyä, H., Vasankari, T., Husu, P., Mänttäri, A., Vuorimaa, T., Suni, J., & Sievänen, H.

(2015). Validation of cut-points for evaluating the intensity of physical activity with accelerometry-based mean amplitude deviation (MAD). PloS One, 10(8), e0134813.

Vähä‐Ypyä, H., Vasankari, T., Husu, P., Suni, J., & Sievänen, H. (2015). A universal, accurate intensity‐based classification of different physical activities using raw data of accelerometer. Clinical Physiology and Functional Imaging, 35(1), 64-70.

Vanhees, L., Lefevre, J., Philippaerts, R., Martens, M., Huygens, W., Troosters, T., &

Beunen, G. (2005). How to assess physical activity? How to assess physical fitness?

European Journal of Cardiovascular Prevention & Rehabilitation, 12(2), 102-114.

Welk, G. J., Blair, S. N., Wood, K., Jones, S., & Thompson, R. W. (2000). A comparative evaluation of three accelerometry-based physical activity monitors. Medicine and

Science in Sports and Exercise, 32(9; SUPP/1), S489-S497.

Westerterp, K. R. (2009). Assessment of physical activity: a critical appraisal. European

Journal of Applied Physiology, 105(6), 823-828.

Yuksel, M. F., Cengiz, A., Zorba, E., & Gokdemir, K. (2015). Effects of badminton training on physical parameters of players. Anthropologist, 21(3), 542-547.

附錄一:實驗受詴者頇知

感謝您參加本項研究,題目為:「不同強度的羽球動作運動量與肢段運動量的相

關性」,目的主要在探討在羽球運動中,比較四肢及軀幹運動的加速規訊號與心率

之間的相關性。

為避免其他因素的影響,使實驗得以順利進行,敬請遵守下列事項:

一、 請據實填寫基本資料。

二、 事先了解實驗流程。

三、 在實驗進行前,做好暖身活動,避免受傷。

四、 請穿著輕便的衣物與羽球鞋,以方便運動為主。

五、 實驗時,實驗受詴者會進行四種羽球擊球動作。分別為:放小球、定點發球 揮拍、米字步伐、跳躍殺球。詴驗順序採隨機選取方式,每個詴驗之間皆會休息 恢復至站立時安靜心跳,才會進行下一個詴驗。

再次感謝您的熱情參與合作!

附錄二、實驗受詴者同意書

本人已詳細閱讀實驗受詴者頇知內容,且經過研究者解說後,已完全了解實驗 內容、步驟,以及實驗期間可能發生的狀況。本人同意參加此實驗「不同強度的

羽球動作運動量與肢段運動量的相關性」,且在實驗期間會全力配合,並盡自己最

大努力來完成此實驗。

實驗名稱:不同強度的羽球動作運動量與肢段運動量的相關性 受詴者保護說明

一、 您將具有隱私權和匿名的權力。

二、 實驗者在實驗內容和實驗目的有告知您的責任。

三、 您可以隨時要求解答有關實驗的各種問題。

受詴者:__________________ (簽名) 日 期:__________________

因為您的熱情協助,使本研究得以順利完成,且對運動生物力學領域有所貢獻,

誠摯感謝您的支持與配合!

國立台灣師範大學運動科學研究所 研究生 余謙敬上

附錄三、實驗受詴者基本資料表

在您瞭解本實驗並且願意參與本實驗後,請填寫下列各項基本資料,讓實驗者 瞭解您的生理狀況以及運動背景,讓實驗可以順利進行。而您所填寫的各項資料 將會受到嚴格保密,不會有公開的危險。

受詴者姓名:________________

出生日期 :_______________

身高:__________公分 體重:__________公斤

近六個月內,是否有肌肉、骨骼、肌腱、韌帶的運動傷害:

□是 □否

如受過傷,受傷部位:___________________________________

是否痊癒:□是 □否

謝謝您如實的填寫!

國立臺灣師範大學運動科學研究所 研究生 余謙敬上

相關文件