• 沒有找到結果。

從理論剖析與實證研究的結果顯示,本研究所建構的水文模式可以有效模擬小集水區

的水文歷線、洪峰時間、洪峰流量,與地表下逕流,提供地表水深與土體飽和度隨時間變 化的空間分佈。但是由於各參數與土地利用之關係尚未釐清,仍僅能以全區均質的方式進 行模擬,而且當集水區面積增大時,為將模擬時間控制在合理的範圍內,必須降低地形的 空間解析度,加上降雨資料空間解析度的不足,使得模擬準確度大幅降低。就小集水區而 言,或許可以達到不錯的預測效果,但是當面積加大時空間變異也跟著增大,再以全區共 用參數去模擬流量可能就不盡理想,雖能有效地模擬出主要的洪峰型態與大致的時間,但 是流量變動的誤差可能致使其實際利用價值降低。未來有關的研究應該仍以小集水區較為 可行,聚焦在各類土地利用與水文參數之間關係的探討,確立效率評估參數的明確準則,

以及率定和建立模式使用於不同地理區時的合理參數資料庫。

另一個模擬結果的誤差乃導源於雨量資料的不足。台灣的地形崎嶇,降雨的時空分佈 變異甚大,但是目前山區的雨量站寥寥可數,根本無法有效顯示各場降雨事件的時空分佈 特性。而許多有關的災害,如土石流、洪水的預警又多仰賴有效降雨資訊的掌握,因此山 區雨量站的廣泛裝設應該是刻不容緩的當務之急。而如何有效將少數幾點的雨量時序資料 轉換成可以操作又合理的時空變動資訊,也是未來值得進一步探索的研究議題。

第五章 引用文獻

徐美玲 (1995) “坡地土壤孔隙水壓動態空間分佈預測模式”,國立台灣大學地理學系地理學

報 18:1-22。

黃誌川、徐美玲、楊奕岑 2002 多流向與單流向集流面積估算結果之空間分佈特性,中華 水土保持學報,33 (1):57-72。

Abrahams, A. D. and Parsons A. J., 1991a, “Relation Between Infiltration and Stone Cover on A Semiarid Hillslope”, Southern Arizona, Journal of Hydrology, 122: 49-59.

Abrahams, A. D. and Parsons, A. J., 1991b, “Resistance to Overland Flow on Desert Pavement and Its Implications for Sediment Transport Modeling”, Water Resources Research, 27(8):

1827-1836.

Beven, K. 2000. On the future of distributed modeling in hydrology, Hydrological Processes, 14:

3183-3184.

Beven, K. J., Warrwn, R. and Zaoui, J. 1980. SHE: towards a methodology for physically-based distributed forecasting in hydrology, In Hydrological Forecasting. IAHS Publication 129, 133-137.

DeCoursey, D. G. 1982. ‘ARS’ Small watershed model, Am. Soc. Agric. Eng. Paper, 2082-2094.

Engman, E. T. and Rogowski, A. S. 1974. A partial area model for storm flow synthesis, Water Resources Research, 10(3): 464-472.

Freeman, T. G., 1991, “Calculating catchment areas with divergent flow based on a regular grid”, Computers and Geosciences, 17(3): 413-422.

Gharangik, A. M. and Chaudhry, M. H., 1991, “Numerical simulation of hydraulic jump”, Journal of Hydrologic Engineering, 117(9): 1195-1232.

Govindaraju, R. S., Kavvas, M. L. and Jones, S. E., 1990, “Approximate analytical solutions for overland flow”, Am. Geophys. Union, Water Resources Research, 26(12): 2903-2912.

Green, W. H. and Ampt, G. A., 1911, “Studies on soil physics, part I, the flow of air and water through soils”, Journal Agriculture Science, 4(1): 1-24.

Hewlett, J. D. and Hibbert, A. R. 1967 Factors affecting the response of small watersheds to precipitation in humid areas. In: Inter. Symp. on Forest Hydrology, Sopper and Lull (Eds), Pergamon Press, Oxford, pp. 275-290.

Huang, J. and Song, C. C. S., 1985, “Stability of dynamic flood routing schemes”, Journal of Hydrologic Engineering, ASCE, 111(12): 1497-1506.

Huggins, L. F. and Monke, E. J. 1968. A mathematic model for simulating the hydrologic response of a watershed, Water Resources Research, 4(3): 529-539.John—Clausen, T.

1979. Systeme Hydrologique Europeen: a short description. SHE Report I, Danish Hydraulics Institute, Horsholm, Denmark.

Jain, S. K., Singh, R. D. and Seth, S. M. 2000. Design flood estimation using GIS supported GIUH approach, Water Resources Management, 14: 369-376.

Kutchment, L. S. 1980. A two-dimensional rainfall-runoff model: identification of parameters and possible use for hydrological forecasts. In Hydrological Forecasting, IAHS Publication 129: 215-219.

Lea, N. J., 1992, “An aspect-driven kinematic routing algorithm, in overland flow”, In A. J.

Parsons and A. D. Abrahams(eds.), Hydraulic and Erosion Mechanics, Chapman and Hall, New York, 1992.

MacCormack, R. W., 1969, “The effect of viscosity in hypervelocity impact cratering”, Am. Inst.

Aeronaut and Astronaut., N. Y., 69-354.

Martz, L. W. and Garbrecht, J., 1992, “Numerical Definition of drainage network and subcatchment areas from digital elevation models”, Computer and Geosciences, 18(6):

747-761.

Morris, E. M. 1979. The effect of the small-slope approximation and lower boundary conditions on solutions of the Saint-Venant equations, Journal of Hydrology, 40: 31-47.

O’Callaghan, J. F. and Mark, D. M. 1984. The extraction of drainage networks from digital elevation data, Graphic and Image Processing, 28: 323-344.

Quinn, P. F., Beven, K. J., Chevallier, P., and Planchon, O., 1991, “The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models”, Hydrological Processes, 5: 59-79.

Ross, B. B., Contractor, D. N. and Shanholz, V. O. 1979. A finite element model of overland and channel flow for assessing fthe hydrological impact of land-use change, Journal of Hydrology, 41: 11-30.

Rovey, E. W. and Woolhiser, D. A. 1977. A distributed kinematic model of upland watersheds, Hydrology Paper 93, Colorado State University, Fort Cpllins, Colorado.

Smith, R. E. and Woolhiser, D. A. 1971. Overland flow on a infiltrating surface, Water Resources Research, 7(4): 899-913.

Speight, J. G.,. 1974, “A parametric approach to landform regions”, Special Publication Institute of British Geographers, 7, 213-230.

Tarboton, D. G., 1997, “A New Method for the Determination of Flow Directions and Contributing Areas in Grid Digital Elevation Models”, Water Resources Research, 33(2):

309-319.

Tayfur, G., Kavvas, M. L., Govindaraju, R. S. and Storm, D. E., 1993, “Applicability of St.

Venant equations for two-dimensional overland flows over rough infiltrating surfaces”, Journal of Hydrologic Engineering, ASCE, 119(1): 51-63.

Weinmann, P. E. and Laurenson, E. M., 1979, “Approximate flood routing methods: A review”, Journal of Hydrologic Engineering, ASCE, 105 (12): 1521-1537.

Wolock, D. M. and Mc Cabe Jr., G. J., 1995, “Comparison of single and multiple flow direction algorithm for computing topographic parameter in TOPMODEL”, Water Resources Research, 31(5): 1315-1324.

Zhou, Q. and Liu, X., 2002, Error assessment of grid-based flow routing algorithms used in hydrological models, International Journal of Geographic Information Science, 16(8):

819-842.

相關文件