• 沒有找到結果。

儘管已有研究探討了動作學習與大腦變化的關係,但大多數相關的研究仍然 以學習簡單的手指動作或是以專家與生手組間比較的方式進行研究。而本研究是 以長時間介入的方式來探討兩者間的關係。本研究實驗參與者在行為資料上已經 超越了所謂”新手”的行為表現,然而卻未達到”專家”的技能水準,由此推論,專家 與新手間的大腦狀態變化可能存在著非線性的關係。

過去針對動作學習與大腦變化的研究發現,動作練習除了會造成皮質區的活 化程度改變 (Kiefer, Gualberto Cremades, & Myer, 2014; Pollok, Latz, Krause, Butz, &

Schnitzler, 2014) 與結構的變化 (Callan & Naito, 2014) 以外,也會造成其他深層不

34

為活化程度的改變,例如基底核 (Hélie, Ell, & Ashby, 2015) 與腦島 (K.R, K, L.A,

& N.J, 2014)。

35

參考文獻

Abemethy, B., & Russell, D. G. (1987). Expert-novice differences in an applied selective attention task. Journal of Sport Psychology, 9, 326-345.

Anderson, J. R. (1996). The architecture of cognition, 1983. Cambridge: MA.

Babiloni, C., Carducci, F., Cincotti, F., Rossini, P. M., Neuper, C., Pfurtscheller, G., &

Babiloni, F. (1999). Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. Neuroimage, 10, 658-665.

Babiloni, C., Del Percio, C., Iacoboni, M., Infarinato, F., Lizio, R., Marzano, N., . . . Gallamini, M. (2008). Golf putt outcomes are predicted by sensorimotor cerebral EEG rhythms. The Journal of physiology, 586, 131-139.

Babiloni, C., Marzano, N., Infarinato, F., Iacoboni, M., Rizza, G., Aschieri, P., . . . Del Percio, C. (2010). “Neural efficiency” of experts’ brain during judgment of actions: a high-resolution EEG study in elite and amateur karate athletes. Behavioural Brain Research, 207, 466-475.

Barnea, A., Rassis, A., & Zaidel, E. (2005). Effect of neurofeedback on hemispheric word recognition. Brain and cognition, 59, 314-321.

Başar, E., Başar-Eroglu, C., Karakaş, S., & Schürmann, M. (2001). Gamma, alpha, delta, and theta oscillations govern cognitive processes. International Journal of

Psychophysiology, 39, 241-248.

Başar, E., Başar-Eroğlu, C., Karakaş, S., & Schürmann, M. (2000). Brain oscillations in perception and memory. International Journal of Psychophysiology, 35, 95-124.

Baumeister, J., Reinecke, K., Liesen, H., & Weiss, M. (2008). Cortical activity of skilled performance in a complex sports related motor task. European journal of applied physiology, 104, 625-631.

Callan, D. E., & Naito, E. (2014). Neural processes distinguishing elite from expert and novice athletes. Cognitive and Behavioral Neurology, 27), 183-188.

Cattaneo, L., & Rizzolatti, G. (2009). The mirror neuron system. Archives of neurology, 66, 557-560.

36

Cheng, M.-Y., Hung, C.-L., Huang, C.-J., Chang, Y.-K., Lo, L.-C., Shen, C., & Hung, T.-M.

(2015). Expert-novice differences in SMR activity during dart throwing. Biological psychology, 110, 212-218.

Cheyne, D. O. (2013). MEG studies of sensorimotor rhythms: a review. Experimental neurology, 245, 27-39.

Chuang, L. Y., Huang, C. J., & Hung, T. M. (2013). The differences in frontal midline theta power between successful and unsuccessful basketball free throws of elite basketball players. International Journal of Psychophysiology, 90, 321-328.

Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. Journal of

Neurophysiology, 79, 1117-1123.

Deeny, S. P., Haufler, A. J., Saffer, M., & Hatfield, B. D. (2009). Electroencephalographic coherence during visuomotor performance: a comparison of cortico-cortical

communication in experts and novices. Journal of motor behavior, 41, 106-116.

Del Percio, C., Marzano, N., Tilgher, S., Fiore, A., Di Ciolo, E., Aschieri, P., . . . Eusebi, F.

(2007). Pre-stimulus alpha rhythms are correlated with post-stimulus sensorimotor performance in athletes and non-athletes: a high-resolution EEG study. Clinical Neurophysiology, 118, 1711-1720.

Del Percio, C., Rossini, P. M., Marzano, N., Iacoboni, M., Infarinato, F., Aschieri, P., . . . Babiloni, C. (2008). Is there a “neural efficiency” in athletes? A high-resolution EEG study. Neuroimage, 42, 1544-1553.

Donahue, M. J., Hoogduin, H., Smith, S. M., Siero, J. C., Chappell, M., Petridou, N., . . . Hendrikse, J. (2012). Spontaneous blood oxygenation level‐dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0‐T fMRI study. Human brain mapping, 33, 511-522.

Doppelmayr, M., & Weber, E. (2011). Effects of SMR and theta/beta neurofeedback on reaction times, spatial abilities, and creativity. Journal of Neurotherapy, 15, 115-129.

Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., . . . Benali, H. (2009).

Contributions of the basal ganglia and functionally related brain structures to motor learning. Behavioural Brain Research, 199, 61-75.

37

Egner, T., & Gruzelier, J. H. (2001). Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. Neuroreport, 12, 4155-4159.

Egner, T., & Gruzelier, J. H. (2004). EEG biofeedback of low beta band components:

frequency-specific effects on variables of attention and event-related brain potentials.

Clinical Neurophysiology, 115, 131-139.

Fitts, P. M., & Posner, M. I. (1967). Human performance. Michigan, MI: Brooks/Cole Publishing Company

Frith, C. D., Friston, K., Liddle, P. F., & Frackowiak, R. S. J. (1991). Willed Action and the Prefrontal Cortex in Man: A Study with PET. Proceedings of the Royal Society of London B: Biological Sciences, 244, 241-246.

Gerardin, E., Sirigu, A., Lehéricy, S., Poline, J.-B., Gaymard, B., Marsault, C., . . . Le Bihan, D. (2000). Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex, 10, 1093-1104.

Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7, 374-385.

Gruzelier, J. H., Foks, M., Steffert, T., Chen, M. J., & Ros, T. (2014). Beneficial outcome from EEG-neurofeedback on creative music performance, attention and well-being in school children. Biological psychology, 95, 86-95.

Hélie, S., Ell, S. W., & Ashby, F. G. (2015). Learning robust cortico-cortical associations with the basal ganglia: An integrative review. Cortex, 64, 123-135.

Halder, S., Agorastos, D., Veit, R., Hammer, E. M., Lee, S., Varkuti, B., . . . Kübler, A.

(2011). Neural mechanisms of brain–computer interface control. Neuroimage, 55, 1779-1790.

Hardwick, R. M., Rottschy, C., Miall, R. C., & Eickhoff, S. B. (2013). A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage, 67, 283-297.

Hatfield, B. D., Landers, D. M., & Ray, W. J. (1984). Cognitive processes during self-paced motor performance: An electroencephalographic profile of skilled marksmen. Journal of Sport Psychology, 6, 42-59.

38

Haufler, A. J., Spalding, T. W., Santa Maria, D. L., & Hatfield, B. D. (2000). Neuro-cognitive activity during a self-paced visuospatial task: comparative EEG profiles in marksmen and novice shooters. Biological psychology, 53, 131-160.

Howe, R. C., & Sterman, M. B. (1972). Cortical-subcortical EEG correlates of suppressed motor behavior during sleep and waking in the cat. Electroencephalogr Clin

Neurophysiol, 32, 681-695.

Hung, T. M., Haufler, A. J., Lo, L. C., Gottfried, M. K., & Hatfield, B. D. (2008).

Visuomotor expertise and dimensional complexity of cerebral cortical activity.

Medicine and science in sports and exercise, 40, 752.

K.R, L., K, W., L.A, B., & N.J, H. (2014). Motor skill acquisition across short and long time scales: A meta-analysis of neuroimaging data. Neuropsychologia, 59, 130-141.

Kao, S.-C., Huang, C.-J., & Hung, T.-M. (2013). Frontal Midline Theta is a Specific Indicator of Optimal Attentional Engagement During Skilled Putting Performance.

Journal of Sport & Exercise Psychology, 35, 470-478.

Kaufer, D., & Lewis, D. (1999). Frontal lobe anatomy and cortical connectivity. The human frontal lobes, 27-44.

Kerick, S. E., McDowell, K., Hung, T.-M., Santa Maria, D. L., Spalding, T. W., & Hatfield, B. D. (2001). The role of the left temporal region under the cognitive motor demands of shooting in skilled marksmen. Biological psychology, 58, 263-277.

Kiefer, A., Gualberto Cremades, J., & Myer, G. (2014). Train the Brain: Novel

Electroencephalography Data Indicate Links between Motor Learning and Brain Adaptations. J Nov Physiother, 4, 2.

Klimesch, W., Doppelmayr, M., Schwaiger, J., Auinger, P., & Winkler, T. (1999).

'Paradoxical' alpha synchronization in a memory task. Cognitive Brain Research, 7, 493-501.

Kober, S. E., Witte, M., Stangl, M., Valjamae, A., Neuper, C., & Wood, G. (2015). Shutting down sensorimotor interference unblocks the networks for stimulus processing: An SMR neurofeedback training study. Clinical Neurophysiology, 126, 82-95.

Koshino, Y., & Niedermeyer, E. (1975). Enhancement of rolandic mu-rhythm by pattern vision. Electroencephalography and clinical neurophysiology, 38, 535-538.

39

Krakauer, J. W. (2009). Motor learning and consolidation: the case of visuomotor rotation . Progress in Motor Control, 629, 405-421.

Krause, C. M., Sillanmäki, L., Koivisto, M., Saarela, C., Häggqvist, A., Laine, M., &

Hämäläinen, H. (2000). The effects of memory load on event-related EEG

desynchronization and synchronization. Clinical Neurophysiology, 111, 2071-2078.

Kuhlman, W. N. (1978). EEG feedback training: enhancement of somatosensory cortical activity. Electroencephalography and clinical neurophysiology, 45, 290-294.

Landers, D. M., Han, M., Salazar, W., & Petruzzello, S. J. (1994). Effects of learning on electroencephalographic and electrocardiographic patterns in novice archers.

International Journal of Sport Psychology, 25, 313-330.

Lemon, R. N., & Griffiths, J. (2005). Comparing the function of the corticospinal system in different species: organizational differences for motor specialization? Muscle &

nerve, 32, 261-279.

Leocani, L., Toro, C., Zhuang, P., Gerloff, C., & Hallett, M. (2001). Event-related desynchronization in reaction time paradigms: a comparison with event-related potentials and corticospinal excitability. Clinical Neurophysiology, 112, 923-930.

Linkenkaer-Hansen, K., Nikulin, V. V., Palva, S., Ilmoniemi, R. J., & Palva, J. M. (2004).

Prestimulus oscillations enhance psychophysical performance in humans. The Journal of Neuroscience, 24, 10186-10190.

Magill, R. A., & Anderson, D. I. (2007). Motor learning and control: Concepts and applications (Vol. 11): McGraw-Hill New York, NY.

Mann, C. A., Sterman, M. B., & Kaiser, D. A. (1996). Suppression of EEG rhythmic frequencies during somato-motor and visuo-motor behavior. International Journal of Psychophysiology, 23, 1-7.

Muthukumaraswamy, S. D., & Johnson, B. W. (2004). Primary motor cortex activation during action observation revealed by wavelet analysis of the EEG. Clinical Neurophysiology, 115, 1760-1766.

Myer, G. D., Kushner, A. M., Faigenbaum, A. D., Kiefer, A., Kashikar-Zuck, S., & Clark, J.

F. (2013). Training the developing Brain, Part I: Cognitive developmental

considerations for training youth. Current sports medicine reports, 12, 304-310.

40

Nakata, H. (2015). Sports Performance and the Brain Sports Performance (pp. 3-12):

Springer.

Orgs, G., Dombrowski, J. H., Heil, M., & Jansen‐Osmann, P. (2008). Expertise in dance modulates alpha/beta event‐related desynchronization during action observation.

European Journal of Neuroscience, 27, 3380-3384.

Palva, S., & Palva, J. M. (2007). New vistas for α-frequency band oscillations. Trends in neurosciences, 30, 150-158.

Park, J. L., Fairweather, M. M., & Donaldson, D. I. (2015). Making the case for mobile cognition: EEG and sports performance. Neuroscience & Biobehavioral Reviews, 52, 117-130.

Percio, C. D., Infarinato, F., Iacoboni, M., Marzano, N., Soricelli, A., Aschieri, P., . . . Babiloni, C. (2010). Movement-related desynchronization of alpha rhythms is lower in athletes than non-athletes: a high-resolution EEG study. Clinical Neurophysiology, 121, 482-491.

Pfurtscheller, G. (1992). Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalography and clinical

neurophysiology, 83, 62-69.

Pfurtscheller, G., Brunner, C., Schlögl, A., & Lopes da Silva, F. (2006). Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks.

Neuroimage, 31, 153-159.

Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110, 1842-1857.

Pfurtscheller, G., & Neuper, C. (1997). Motor imagery activates primary sensorimotor area in humans. Neuroscience Letters, 239, 65-68.

Pfurtscheller, G., Stancak Jr, A., & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: a review.

International Journal of Psychophysiology, 24, 39-46.

Pineda, J. A. (2005). The functional significance of mu rhythms: translating “seeing” and

“hearing” into “doing”. Brain research reviews, 50, 57-68.

41

Pineda, J. A. (2008). Sensorimotor cortex as a critical component of an ‘extended’mirror neuron system: does it solve the development, correspondence, and control problems in mirroring. Behavioral and Brain Functions, 4, 47.

Poldrack, R. A., Sabb, F. W., Foerde, K., Tom, S. M., Asarnow, R. F., Bookheimer, S. Y., &

Knowlton, B. J. (2005). The neural correlates of motor skill automaticity. The Journal of Neuroscience, 25, 5356-5364.

Pollok, B., Latz, D., Krause, V., Butz, M., & Schnitzler, A. (2014). Changes of motor-cortical oscillations associated with motor learning. Neuroscience, 275, 47-53.

Ritter, P., Moosmann, M., & Villringer, A. (2009). Rolandic alpha and beta EEG rhythms' strengths are inversely related to fMRI‐BOLD signal in primary somatosensory and motor cortex. Human brain mapping, 30, 1168-1187.

Ros, T., Moseley, M. J., Bloom, P. A., Benjamin, L., Parkinson, L. A., & Gruzelier, J. H.

(2009). Optimizing microsurgical skills with EEG neurofeedback. BMC Neurosci, 10, 87.

Sabate, M., Llanos, C., Enriquez, E., & Rodriguez, M. (2012). Mu rhythm, visual processing and motor control. Clinical Neurophysiology, 123, 550-557.

Salenius, S., Schnitzler, A., Salmelin, R., Jousmäki, V., & Hari, R. (1997). Modulation of human cortical rolandic rhythms during natural sensorimotor tasks. Neuroimage, 5, 221-228.

Savelsbergh, G. J., Williams, A. M., Kamp, J. V. D., & Ward, P. (2002). Visual search, anticipation and expertise in soccer goalkeepers. Journal of sports sciences, 20, 279-287.

Schaechter, J. D., van Oers, C. A., Groisser, B. N., Salles, S. S., Vangel, M. G., Moore, C.

I., & Dijkhuizen, R. M. (2012). Increase in sensorimotor cortex response to somatosensory stimulation over subacute poststroke period correlates with motor recovery in hemiparetic patients. Neurorehabilitation and Neural Repair, 26, 325-334.

Schmidt, R. A., & Lee, T. (1988). Motor Control and Learning, 5E: Human kinetics.

Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control.

Experimental Brain Research, 185, 359-381.

42

Shadmehr, R., & Wise, S. P. (2005). The computational neurobiology of reaching and pointing: a foundation for motor learning. MIT press.

Sterman, M. B. (1996). Physiological origins and functional correlates of EEG rhythmic activities: implications for self-regulation. Biofeedback Self Regul, 21, 3-33.

Sterman, M. B., & Friar, L. (1972). Suppression of seizures in an epileptic following sensorimotor EEG feedback training. Electroencephalography and clinical neurophysiology, 33, 89-95.

Sun, F. T., Miller, L. M., Rao, A. A., & D'Esposito, M. (2007). Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cerebral Cortex, 17, 1227-1234.

Thomas, C., & Baker, C. I. (2013). Teaching an adult brain new tricks: A critical review of evidence for training-dependent structural plasticity in humans. Neuroimage, 73, 225-236.

Wu, T., Kansaku, K., & Hallett, M. (2004). How self-initiated memorized movements become automatic: a functional MRI study. Journal of Neurophysiology, 91, 1690-1698.

Zhu, F. F., Maxwell, J. P., Hu, Y., Zhang, Z. G., Lam, W. K., Poolton, J. M., & Masters, R.

S. (2010). EEG activity during the verbal-cognitive stage of motor skill acquisition.

Biol Psychol, 84, 221-227.

王國鑌, 陳泰廷, 黃崇儒, & 洪聰敏. (2015). 鏡像神經元之旅:以 Mu 節律探討動作 技能學習與運動表現. 臺灣運動心理學報, 15, 127-147.

高士竣, 洪聰敏, & 黃崇儒. (2009). 較佳精準運動表現中專注的腦波特徵. 中華體育 季刊, 23, 1-16.

相關文件