• 沒有找到結果。

將中間支撐之最大降伏應力提昇,亦是一大改進方式。

4.由動態的測試中可以發現當砂袋墜落後,中間支撐並沒有明顯的 變形或破壞(使用尼龍質之安全母索),所以可以了解當兩支中間支撐架 設距離為 10m 時,施工人員發生墜落時中間支撐是不會產生破壞的。

5.建議當在選用中間支撐型式時應該考量所使用的安全母索材質,

若是選用鋼索就應該使用美式的中間支撐。若使用日式的安全母索就應 該使用日式的中間支撐。

6.由實驗測試中可以知道不管使用美式安全母索或是日式安全母 索,其砂袋墜落距離都符合容許墜落高度,且我國屬亞洲國家體型與日 本較為接近,所以中間支撐設置間距可以採用設置容許墜落高度與間距 計算公式。

7.在行政院勞委會營造安全衛生設施標準部分條文修正條文第二十 三條指出,安全母索得由鋼索、尼龍繩索或合成纖維之材質構成,且說 明水平安全母索之設置超過 3m 長者應設立中間杆柱,其間距應在 3m 以 下,但未說明中間杆柱應有之型式,且在測試實驗中發現不同型式中間 支撐需搭配不同安全母索使用,但在法規上卻沒有說明,建議可將日式 與美式之中間支撐列為基本選用款。

8.我國對安全帶或安全母索繫固之錨錠,設定至少應能承受每人 2300 ㎏之拉力,此規定與美國的 22.2kN 相仿所以無須更改。

7-2 建議

1.本研究是針對日本標準型中間支撐(SK-80D 平行型)進行分析與 實驗的研究,後續作業也可以針對不同規格的中間支撐做模擬分析與實 驗,如此可以有利日後法規的設立,也有利於中間支撐改良研究的參考 資料。

2. 中 間 支 撐 之 最 大 降 伏 應 力 ( 約 500kg) 與 安 全 母 索 之 拉 力 強 度 (2300kg),其量值之差距甚大,後續工作將再予研究是否需針對中間支 撐結構做改良,適當提昇中間支撐之強度;並探討我國中間支撐相關法 規是否需有所修改,以符合安全母索的設計,達到真正的安全防護效 果。

3.建議國內設立中間支撐相關法規可以更改依建築樓層高度調整中間 支撐設立間距,以降低中間支撐使用率也可以增加施工空間,且可以提 高施工業者使用意願。

4.我國現行法規中規定中間支撐之間距不得超過 3m。但是支撐間距與 墬落高度 以及墬落者所受的力量有關,我國現行的規定可使墜落距離非 常小,但同時墜落者以及中間支撐所受力量非常大。因我國與鄰國日本 國情相近,人員的體型也大致相同,因此建議將法規中有關中間支撐檢 舉之規定改為如日本假設工業協會採用之方式,以墜落高度與支撐間距 之間的關係式為準。

5.由動態墜落試驗以及對中間支撐間距與墜落距離關係的初步計算,

可知使用尼龍母索以及使用鋼索時,中間支撐的行為有所不同,建議法 規中須註明必須採用不同設計要求。

參考文獻

[1] 行 政 院 勞 委 會 安 全 衛 生 研 究 所 , “ 營 造 業 職 業 災 害 實 例 -1990~1991”,安全衛生研究所圖書室,行政院勞委會,1991。

[2] 行政院勞委會安全衛生研究所,“營造業職業災害實例-1993”,安 全衛生研究所圖書室,行政院勞委會,1993。

[3] 行政院勞委會安全衛生研究所,“營造業職業災害實例-1994”,安 全衛生研究所圖書室,行政院勞委會,1994。

[4] 行政院勞委會安全衛生研究所,“營造業職業災害實例-1995”,安 全衛生研究所圖書室,行政院勞委會,1995。

[5] 中華民國行政院勞工委員營造安全衛生設施標準,第二十三條 [6] 日本,“仮設機材構造基準とその解說”,社団法人仮設工業会,

平成 6 年

[7] 日本,“仮設機材總合カタログ”

[8] 日本“経年仮設機材の管理に関する技術基準と解說”,社団法人 仮設工業会,平成 16 年

[9]http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STA NDARDS&p_id=10275 美國勞工部網站

[10]http://www.capitalsafety.com/Default.aspx?tabid=90&mid=404&ctl=Det ails&ProductId=20316 美國勞工部網站

[11]http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=ST ANDARDS&p_id=9730 美國勞工部網站

[12]Andre Lan , Jean Arteau ,and Christian Sirard, 「Method for validating a multi-component safety system」, Safety Science 42 (2004) .

[13]Jean Pierre Martin P. Eng. 「Selection and use of fall protection and rescue equipmen for work on towers」, FPSA Fall Protection Services.

[14]Hongwei Hsiao, Bruce Brartmller and Jennifer Whitestuone,「Sizing and fit of fall-protection harnesses」, ERGONOMICS,(2003).

[15]Health and Safety Executive, 「A review of criteria concerning design, selection,installation, use, maintenance and training aspects of

temporarily-installed horizontal lifelines」,(2004).

[16] 康淵、陳信吉,“ANSYS 入門”,全華科技圖書股份有限公司,

民國 93 年

[17] 陳精一,“ANSYS6.0 電腦輔助工程分析”,全華科技股份有限 公司,民國 91 年

[18] 日本“足場の組立て等工事の作業指針”,建設業労働災害防止協 会,平成 9 年

[19] 日本“足場の組立て等作業の安全”,建設業労働災害防止協会,

平成 8 年

[20] “型鋼擋土支撐安裝及拆卸作業安全規範研究”,民國 93 年,行 政院勞工委員會勞工安全衛生研究所研究計畫

[21] 林芳祥,民國 93 年,“鋼構架支撐系統結構安全監測點選擇之研 究”,中華大學土木工程研究所碩士論文

[22] “鋼管支撐材料疲勞性能研究”,民國 94,行政院勞工委員會勞 工安全衛生研究所研究計畫

[23] 陳精一,蔡國忠,“電腦輔助工程分析 ANSYS 使用指南”,全華 科技股份有限公司,民國 91 年

[24] 李文海 ,“鋼筋混凝土規範題型解析”,文笙書局股份有限公 司,民國 85 年

[25] 張朝暉 ,“ANSYS8.0 結構分析及實例解析”,機械工業出版 社,2005 年

附錄一 美國安全母索相關規定

1. Personal fall arrest systems – (a) General test conditions.

(1) Lifelines, lanyards, and deceleration devices should be attached to an anchorage and connected to the body-belt or body harness in the same manner as they would be when used to protect employees, except that lanyards should be tested only when connected directly to the anchorage, and not when connected to a lifeline.

(2) The anchorage should be rigid, and should not have a deflection greater than .04 inches (1 cm) when a force of 2,250 pounds (10.01 Kn) is applied.

(3) The frequency response of the load measuring instrumentation should be 100 Hz.

(4) The test weight used in the strength and force tests should be a rigid, metal cylindrical or torso-shaped object with a girth of 38 inches plus or minus 4 inches (96.5 cm plus or minus 10.16 cm).

(5) The lanyard or lifeline used to create the free fall distance should be the one supplied with the system, or in its absence, the least elastic lanyard or lifeline available to be used by the employee with the system.

(6) The test weight for each test should be hoisted to the required level and should be quickly released without having any appreciable motion imparted to it.

(7) The system's performance should be evaluated, taking into account the range of environmental conditions for which it is designed to be used.

(8) Following the test, the system need not be capable of further operation.

(b) Strength test.

(1) During the testing of all systems, a test weight of 300 pounds plus or minus 5 pounds (136.08 kg plus or minus 2.27 kg) should be used. (See paragraph (a)(4) above.)

(2) The test consists of dropping the test weight once. A new unused system should be used for each test.

(3) For lanyard systems, the lanyard length should be 6 feet plus or minus 2 inches (1.83 m plus or minus 5.08 cm) as measured from the fixed anchorage to the attachment on the body belt or harness.

(4) For rope-grab-type deceleration systems, the length of the lifeline above the center line of the grabbing mechanism to the lifeline's anchorage point should not exceed 2 feet (0.61 m).

(5) For lanyard systems, for systems with deceleration devices which do not automatically limit free fall distance to 2 feet (0.61 m) or less, and for systems with deceleration devices which have a connection distance in excess of 1 foot (0.31 m) (measured between the centerline of the lifeline and the attachment point to the body belt or harness), the test weight should be rigged to free fall a distance of 7.5 feet (2.29 m) from a point that is 1.5 feet (45.72 cm) above the anchorage point, to its hanging location (6 feet (1.83 m) below the anchorage).

The test weight should fall without interference, obstruction, or hitting the floor or the ground during the test. In non-elastic wire lanyard of sufficient length may need to be added to the system (for test purposes) to create the necessary free fall distance.

(6) For deceleration device systems with integral lifelines or lanyards which automatically limit free fall distance to 2 feet (0.61 m) or less, the test weight should be rigged to free fall a distance of four feet (1.22 m).

(7) Any weight which detaches from the belt or harness should constitute failure for the strength test.

(c) Force test general. The test consists of dropping the respective test weight once. A new, unused system should be used for each test.

(1) For lanyard systems.

(i) A test weight of 220 pounds plus or minus three pounds (99.79 kg plus or minus 1.36 kg) should be used (see paragraph (a)(4) above).

(ii) Lanyard length should be 6 feet plus or minus 2 inches (1.83 m plus or minus 5.08 cm) as measured from the fixed anchorage to the attachment on the body belt or body harness.

(iii) The test weight should fall free from the anchorage level to its handling location (a total of 6 feet (1.83 m) free fall distance) without interference, obstruction, or hitting the floor or ground during the test.

(2) For all other systems.

(i) A test weight of 220 pounds plus or minus 3 pounds (99.79 kg plus or minus 1.36 kg) should be used (see paragraph (a)(4) above).

(ii) The free fall distance to be used in the test should be the maximum fall distance

physically permitted by the system during normal use conditions, up to a maximum free fall distance for the test weight of 6 feet (1.83 m), except as follows:

(A) For deceleration systems which have a connection link or lanyard, the test weight should free fall a distance equal to the connection distance (measured between the center line of the lifeline and the attachment point to the body belt or harness).

(B) For deceleration device systems with integral life lines or lanyards which automatically limit free fall distance to 2 feet (0.61 m) or less, the test weight should free fall a distance equal to that permitted by the system in normal use. (For example, to test a system with a self-retracting lifeline or lanyard, the test weight should be supported and the system allowed to retract the lifeline or lanyard as it would in normal use. The test weight would then be released and the force and deceleration distance measured.)

(3) Failure. A system fails the force test if the recorded maximum arresting force exceeds 1,260 pounds (5.6 Kn) when using a body belt, or exceeds 2,520 pounds (11.21 Kn) when using a body harness.

(4) Distances. The maximum elongation and deceleration distance should be recorded during the force test.

(d) Deceleration device tests -- general. The device should be evaluated or tested under the environmental conditions (such as rain, ice, grease, dirt, type of lifeline, etc.) for which the device is designed.

(1) Rope-grab-type deceleration devices.

(i) Devices should be moved on a lifeline 1,000 times over the same length of line a distance of not less than 1 foot (30.48 cm), and the mechanism should lock each time.

(ii) Unless the device is permanently marked to indicate the type of lifelines which must be used, several types (different diameters and different materials) of lifelines should be used to test the device.

(2) Other-activating-type deceleration devices. The locking mechanisms of other self-activating-type deceleration devices designed for more than one arrest should lock each of 1,000 times as they would in normal service.

2. Positioning device systems –

(a) Test Conditions.

(1) The fixed anchorage should be rigid and should not have a deflection greater than .04 inches (1.02 mm) when a force of 2,250 pounds (10.01 Kn) is applied.

(2) For lineman's body belts and pole straps, the body belt should be secured to a 250 pound (113.4 kg) bag of sand at a point which simulates the waist of an employee. One end of the pole strap should be attached to the rigid anchorage and the other end to the body belt. The sand bag should be allowed to free fall a distance of 4 feet (1.22 m). Failure of the pole strap and body belt should be indicated by any breakage or slippage sufficient to permit the bag to fall free to the ground.

(3) For window cleaner's belts, the complete belt should withstand a drop test consisting of a 250 pound (113.4 kg) weight falling free for a distance of 6 feet (1.83 m). The weight should be a rigid object with a girth of 38 inches plus or minus four inches (96.52 cm plus or minus 10.16 cm.) The weight should be placed in the waistband with the belt buckle drawn firmly against the weight, as when the belt is worn by a window cleaner. One belt terminal should be attached to a rigid anchor and the other terminal should hang free. The terminals should be adjusted to their maximum span. The weight fastened in the freely suspended belt should then be lifted exactly 6 feet (1.83 m) above its "at rest" position and released so as to permit a free fall of 6 feet (1.83 m) vertically below the point of attachment of the terminal anchor.

The belt system should be equipped with devices and instrumentation capable of measuring the duration and magnitude of the arrest forces. Any breakage or slippage which permits the weight to fall free of the system constitutes failure of the test. In addition, the initial and subsequent arresting force peaks should be measured and should not exceed 2,000 pounds (8.9 Kn) for more than 2 milliseconds for the initial impact, nor exceed 1,000 pounds (4.45 Kn) for the remainder of the arrest time.

(4) All other positioning device systems (except for restraint line systems) should withstand a drop test consisting of a 250-pound (113.4 kg) weight falling free for a distance of 4 feet (1.22 m). The weight should be a rigid object with a girth of 38 inches plus or minus 4 inches (96.52 cm plus or minus 10.16 cm). The body belt or harness should be affixed to the test weight as it would be to an employee. The system should be connected to the rigid anchor in the manner that the system would be connected in normal use. The weight should be lifted exactly 4 feet (1.22 m) above its "at rest" position and released so as to permit a vertical free

fall of 4 feet (1.22 m). Any breakage or slippage which permits the weight to fall free to the ground should constitute failure of the system.

附錄二 日本安全母索相關規定

根據日本經年假設機材管理相關技術基準與解說社團法人假設工業會【6】

相關文件